DOI QR코드

DOI QR Code

Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model

  • Lee, Mun-Hoe (Health Food Research and Development, NEWTREE Co., Ltd.) ;
  • Kim, Hyeong-Min (Health Food Research and Development, NEWTREE Co., Ltd.) ;
  • Chung, Hee-Chul (Health Food Research and Development, NEWTREE Co., Ltd.) ;
  • Kim, Do-Un (Health Food Research and Development, NEWTREE Co., Ltd.) ;
  • Lee, Jin-Hee (Health Food Research and Development, NEWTREE Co., Ltd.)
  • Received : 2021.08.23
  • Accepted : 2021.09.09
  • Published : 2021.10.28

Abstract

This study examined whether the oral administration of low-molecular-weight collagen peptide (LMCP) containing 3% Gly-Pro-Hyp with >15% tripeptide (Gly-X-Y) content could ameliorate osteoarthritis (OA) progression using a rabbit anterior cruciate ligament transection (ACLT) model of induced OA and chondrocytes isolated from a patient with OA. Oral LMCP administration (100 or 200 mg/kg/day) for 12 weeks ameliorated cartilage damage and reduced the loss of proteoglycan compared to the findings in the ACLT control group, resulting in dose-dependent (p < 0.05) improvements of the OARSI score in hematoxylin & eosin (H&E) and Safranin O staining. In micro-computed tomography analysis, LMCP also significantly (p < 0.05) suppressed the deterioration of the microstructure in tibial subchondral bone during OA progression. The elevation of IL-1β and IL-6 concentrations in synovial fluid following OA induction was dose-dependently (p < 0.05) reduced by LMCP treatment. Furthermore, immunohistochemistry illustrated that LMCP significantly (p < 0.05) upregulated type II collagen and downregulated matrix metalloproteinase-13 in cartilage tissue. Consistent with the in vivo results, LMCP significantly (p < 0.05) increased the mRNA expression of COL2A1 and ACAN in chondrocytes isolated from a patient with OA regardless of the conditions for IL-1β induction. These findings suggest that LMCP has potential as a therapeutic treatment for OA that stimulates cartilage regeneration.

Keywords

Acknowledgement

This research was supported by NEWTREE Co., Ltd.

References

  1. Glyn-Jones S, Palmer A, Agricola R, Price A, Vincent T, Weinans H, et al. 2015. Osteoarthritis. Lancet 386: 376-387. https://doi.org/10.1016/S0140-6736(14)60802-3
  2. Le Graverand-Gastineau MP. 2010. Disease modifying osteoarthritis drugs: facing development challenges and choosing molecular targets. Curr. Drug Targets 11: 528-535. https://doi.org/10.2174/138945010791011893
  3. Gamble R, Wyeth-Ayerst J, Johnson EL. 2000. Recommendations for the medical management of osteoarthritis of the hip and knee. Arthritis Rheum. 43: 1905-1915. https://doi.org/10.1002/1529-0131(200009)43:9<1905::AID-ANR1>3.0.CO;2-P
  4. Lee SA, Moon SM, Han SH, Hwang EJ, Park BR, Kim JS, et al. 2018. Chondroprotective effects of aqueous extract of Anthriscus sylvestris leaves on osteoarthritis in vitro and in vivo through MAPKs and NF-κB signaling inhibition. Biomed. Pharmacother. 103: 1202-1211. https://doi.org/10.1016/j.biopha.2018.04.183
  5. Jeong DH, Ullah HMA, Goo MJ, Ghim SG, Hong IH, Kim AY, et al. 2018. Effects of oral glucosamine hydrochloride and mucopolysaccharide protein in a rabbit model of osteoarthritis. Int. J. Rheum. Dis. 21: 620-628. https://doi.org/10.1111/1756-185X.13239
  6. Ricci M, Micheloni GM, Berti M, Perusi F, Sambugaro E, Vecchini E, et al. 2017. Clinical comparison of oral administration and viscosupplementation of hyaluronic acid (HA) in early knee osteoarthritis. Musculoskelet. Surg. 101: 45-49. https://doi.org/10.1007/s12306-016-0428-x
  7. Jiang J, Cai M. 2021. Cardamonin inhibited IL-1β-induced injury by inhibition of NLRP3 inflammasome via activating Nrf2/NQO1 signaling pathway in chondrocyte. J. Microbiol. Biotechnol. 31: 794-802. https://doi.org/10.4014/jmb.2103.03057
  8. Dong C, Lv Y. 2016. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8: 42. https://doi.org/10.3390/polym8020042
  9. Song H, Li B. 2017. Beneficial effects of collagen hydrolysate: a review on recent developments. Biomed. J. Sci. Tech. Res. 1: 1-4.
  10. Tsuruoka N, Yamato R, Sakai Y, Yoshitake Y, Yonekura H. 2007. Promotion by collagen tripeptide of type I collagen gene expression in human osteoblastic cells and fracture healing of rat femur. Biosci. Biotechnol. Biochem. 71: 2680-2687. https://doi.org/10.1271/bbb.70287
  11. Naraoka T, Ishibashi Y, Tsuda E, Yamamoto Y, Kusumi T, Toh S. 2013. Periodic knee injections of collagen tripeptide delay cartilage degeneration in rabbit experimental osteoarthritis. Arthritis Res. Ther. 15: R32. https://doi.org/10.1186/ar4181
  12. Min G. 2017. Collagen hydrolysate Gly-Pro-Hyp on osteoblastic proliferation and differentiation of MC3T3-E1 cells. J. Clin. Nurs. Res. 1: 40-46.
  13. Shigemura Y, Iwai K, Morimatsu F, Iwamoto T, Mori T, Oda C, et al. 2009. Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J. Agric. Food Chem. 57: 444-449. https://doi.org/10.1021/jf802785h
  14. Yamamoto S, Hayasaka F, Deguchi K, Okudera T, Furusawa T, Sakai Y. 2015. Absorption and plasma kinetics of collagen tripeptide after peroral or intraperitoneal administration in rats. Biosci. Biotechnol. Biochem. 79: 2026-2033. https://doi.org/10.1080/09168451.2015.1062711
  15. Yazaki M, Ito Y, Yamada M, Goulas S, Teramoto S, Nakaya MA, et al. 2017. Oral ingestion of collagen hydrolysate leads to the transportation of highly concentrated Gly-Pro-Hyp and its hydrolyzed form of Pro-Hyp into the bloodstream and skin. J. Agric. Food Chem. 65: 2315-2322. https://doi.org/10.1021/acs.jafc.6b05679
  16. Kim DU, Chung HC, Choi J, Sakai Y, Lee BY. 2018. Oral intake of low-molecular-weight collagen peptide improves hydration, elasticity, and wrinkling in human skin: a randomized, double-blind, placebo-controlled study. Nutrients 10: 826. https://doi.org/10.3390/nu10070826
  17. Kim J-K, Lee J-H, Yang M-S, Seo D-B, Lee S-J. 2009. Beneficial effect of collagen peptide supplement on anti-aging against photodamage. Korean J. Food Sci. Technol. 41: 441-445.
  18. Okawa T, Yamaguchi Y, Takada S, Sakai Y, Numata N, Nakamura F, et al. 2012. Oral administration of collagen tripeptide improves dryness and pruritus in the acetone-induced dry skin model. J. Dermatol. Sci. 66: 136-143. https://doi.org/10.1016/j.jdermsci.2012.02.004
  19. Pyun HB, Kim M, Park J, Sakai Y, Numata N, Shin JY, et al. 2012. Effects of collagen tripeptide supplement on photoaging and epidermal skin barrier in UVB-exposed hairless mice. Prev. Nutr. Food Sci. 17: 245-253. https://doi.org/10.3746/PNF.2012.17.4.245
  20. Liu Z, Hu X, Man Z, Zhang J, Jiang Y, Ao Y. 2016. A novel rabbit model of early osteoarthritis exhibits gradual cartilage degeneration after medial collateral ligament transection outside the joint capsule. Sci. Rep. 6: 34423. https://doi.org/10.1038/srep34423
  21. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. 2006. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil. 14: 13-29. https://doi.org/10.1016/j.joca.2005.07.014
  22. Laverty S, Girard CA, Williams JM, Hunziker EB, Pritzker KP. 2010. The OARSI histopathology initiative-recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthritis Cartilage 18 Suppl 3: S24-S34.
  23. Kwon JY, Lee SH, Na HS, Jung K, Choi J, Cho KH, et al. 2018. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10. Sci. Rep. 8: 13832. https://doi.org/10.1038/s41598-018-32206-7
  24. Pritzker KP, Gahunia HK. 2020. Histopathology evaluation of cartilage disease and repair, pp. 371-388. Articular Cartilage of the Knee, Ed. Springer.
  25. Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, et al. 2014. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed. Res. Int. 2014: 648459.
  26. Yang CY, Chanalaris A, Troeberg L. 2017. ADAMTS and ADAM metalloproteinases in osteoarthritis-looking beyond the 'usual suspects'. Osteoarthritis Cartilage 25: 1000-1009. https://doi.org/10.1016/j.joca.2017.02.791
  27. Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB. 2002. Structure and function of aggrecan. Cell Res. 12: 19-32. https://doi.org/10.1038/sj.cr.7290106
  28. Sandell LJ, Aigner T. 2001. Articular cartilage and changes in arthritis: cell biology of osteoarthritis. Arthritis Res. Ther. 3: 1-7. https://doi.org/10.1186/ar133
  29. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP. 1991. Subchondral bone in osteoarthritis. Calcif. Tissue Int. 49: 20-26. https://doi.org/10.1007/BF02555898
  30. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. 2000. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest. Radiol. 35: 581-588. https://doi.org/10.1097/00004424-200010000-00004
  31. Konig D, Oesser S, Scharla S, Zdzieblik D, Gollhofer A. 2018. Specific collagen peptides improve bone mineral density and bone markers in postmenopausal women-a randomized controlled study. Nutrients 10: 97. https://doi.org/10.3390/nu10010097
  32. Klocke R, Levasseur K, Kitas GD, Smith JP, Hirsch G. 2018. Cartilage turnover and intra-articular corticosteroid injections in knee osteoarthritis. Rheumatol. Int. 38: 455-459. https://doi.org/10.1007/s00296-018-3988-2
  33. Pereira H, Cengiz IF, Vilela C, Ripoll PL, Espregueira-Mendes J, Oliveira JM, et al. 2018. Emerging concepts in treating cartilage, osteochondral defects, and osteoarthritis of the knee and ankle. Adv. Exp. Med. Biol. 1059: 25-62. https://doi.org/10.1007/978-3-319-76735-2_2
  34. Hu ZC, Luo ZC, Jiang BJ, Fu X, Xuan JW, Li XB, et al. 2019. The protective effect of magnolol in osteoarthritis: in vitro and in vivo studies. Front. Pharmacol. 10: 393. https://doi.org/10.3389/fphar.2019.00393
  35. Postlethwaite AE, Seyer JM, Kang AH. 1978. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc. Natl. Acad. Sci. USA 75: 871-875. https://doi.org/10.1073/pnas.75.2.871