
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, Oct. 2021 3750
Copyright ⓒ 2021 KSII

http://doi.org/10.3837/tiis.2021.10.015 ISSN : 1976-7277

Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web

Application

Nurul Atiqah Abu Talib1, and Kyung-Goo Doh2*
1 Computer Science and Engineering, Hanyang University ERICA

Gyeonggi-do, South Korea
[e-mail: atiqah@hanyang.ac.kr]

2 Computer Science and Engineering, Hanyang University ERICA
Gyeonggi-do, South Korea

[e-mail: doh@hanyang.ac.kr]
*Corresponding author: Kyung-Goo Doh

Received May 11, 2020; revised August 27, 2020; revised March 23, 2021; accepted September 1, 2021;

published October 31, 2021

Abstract

This study investigates open-source dynamic XSS filters used as security devices in web
applications to account for the effectiveness of filters in protecting against XSS attacks. The
experiment involves twelve representative filters, which are examined individually by placing
them into the final output function of a custom-built single-input-form web application. To
assess the effectiveness of the filters in their tasks of sanitizing XSS payloads and in preserving
benign payloads, a black-box testing method is applied using an automated XSS testing
framework. The result in working with malicious and benign payloads shows an important
trade-off in the filters’ tasks. Because the filters that only check for dangerous or safe elements,
they seem to neglect to validate their values. As some safe values are mistreated as dangerous
elements, their benign payload function is lost in the way. For the filters to be more effective,
it is suggested that they should be able to validate the respective values of malicious and benign
payloads; thus, minimizing the trade-off. This particular assessment of XSS filters provides
important insight regarding the filters that can be used to mitigate threats, including the
possible configurations to improve them in handling both malicious and benign payloads.

Keywords: Cross-site scripting, filters, open-source, web application, security, assessment.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3751

1. Introduction

Cross-site scripting (XSS) is one of the most prominent web attacks and continues to plague
web applications, appearing in the OWASP Top 10 Most Critical Web Application Security
Risks for over a decade [1][2]. It is a type of attack that targets client-side scripts to cause
unintended execution of scripts in the client’s web browser.

Recent studies have shown that the number of web applications potentially vulnerable to
XSS attacks has increased significantly between the years 2016 and 2018 [3]. The Hacker
News is still reporting incidents of rampant online website attacks [4]. Web developers
sometimes experience time crunches when they are working, which can cause them to have
less regard for secure coding practices, thus risking their applications to XSS. They would
seem to rely on already available XSS filters for internet security. However, this raises the
question of whether these filters are sufficiently reliable to perform their expected task. It is
this concern that creates our strong motivation to carry out a more scrupulous examination of
their operation in internet systems in a manner that would enable us (and web developers) to
detect the reasons for these failures.

A good filter is the one that would not only tackle harmful inputs efficiently but also handle
benign inputs correctly. That is to say, some applications allow users to customize a web
page’s content, such as by defining custom (yet legitimate) HTML. If these inputs were to be
filtered out, the application then no longer serves its intended purpose.

This study examines currently available dynamic open-source filters commonly used as
security devices in web applications. We assess their performance in defending against XSS
attacks and in handling benign payloads. Our main concern is to appraise common filtering
techniques used by the filters to see if they sustain correct sanitized payloads. We also seek to
underline their benefits based on the filtering ability. By extension, this study aims to assist
web developers (particularly non-experts who require additional security input) with their
security needs, and to help them consolidate security measures in their applications.

Specifically, this study systematically analyzes 12 readily available open-source XSS
filters. Our overall objective in this paper is to (1) review the sanitization ability of each filter
according to their success or failure, (2) investigate the extent of the filter’s ability to handle
benign payloads so that it does not destroy the payloads’ intended meaning in any way, (3)
make improvements on the filters’ sanitization capabilities within certain conditions, and (4)
survey each of the filtering techniques used and their ability in handling payloads. With the
view that a properly detailed assessment on the capabilities is still forthcoming, we initiate this
experiment to examine the benefits of web application open-source XSS filters as a security
device.

In order to answer these questions, we test the 12 filters, some of which are recommended
by the InfoSec Institute [5]. We create a simple vulnerable web application with a single input
form and place each of the 12 filters (one at a time) in the final output function of the
application. The final output function is where the HTML string is supplied to the browser.
We assess the ability of filters to prevent XSS attacks by testing them against commonly
reported attack payloads. We identify successful and unsuccessful attacks based on the
execution of scripts on the browser.

This report comprises seven sections. Having stated our research problems as an
introduction in Section 1, we next proceed to Section 2 and provide basic descriptions of the
various forms of XSS attacks and vulnerable applications with examples. In Section 3, we
explain the procedures and processes of our experiments. Section 4 presents our findings and
results. A summary of our findings is presented in Section 5 and our discussions of related

3752 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

works are given in Section 6. Section 7 provides our final conclusions and possible directions
for future works.

2. Preliminaries
This section provides an overview of XSS attacks, our description of vulnerability contexts in
web applications, and a basic explanation of open-source XSS filters.

2.1 Types of Cross-site Scripting
XSS is a code injection attack, commonly associated with HTML injection. XSS can be
described as an attacker injecting malicious scripts into web applications, thereby causing
unintended execution by a client’s web browser. This exploitation is possible due to poor
filtering and sanitization routines for user inputs. The consequences of XSS attacks include
information theft, session hijacking, web defacement, and loss of system integrity. Generally,
XSS attacks are divided into three different types: reflected, stored, and DOM-based.

Reflected (or non-persistent) XSS attacks occur when malicious payloads are sent back to
the client without any modification in the output of the web-page response, hence their name.
Stored (or persistent) XSS attacks occur when user inputs containing injected code are stored
in a data storage system. These inputs are later referenced and executed on a web page. Similar
to reflected XSS, stored XSS also results from insufficient sanitization of user inputs in server-
side code. DOM-based XSS occurs when client-side scripts execute malicious payloads as a
result of modifying the document object model (DOM) structure of a web page. It functions
quite similarly to reflected XSS, but exploits the vulnerability on the client-side code instead.
Stored DOM-based XSS can also occur if the malicious scripts are stored in client-side storage
(e.g., a cache).

Understanding the nature of XSS is crucial to defending against XSS attacks. That is to say,
in order to successfully circumvent the consistent incursions of new attacks, a thoroughly
updated knowledge on the type of XSS involved is critical. It is by only this knowledge can a
good strategy for developing new approach to improve the existing defense mechanisms of
internet security be initiated. This points to the fact that fighting these attacks is an ongoing
challenge for security experts.

2.2 Vulnerability Contexts in Web Applications
In this sub-section, we discuss how web applications are vulnerable to XSS. Web applications
are designed to be user interactive. For this interactivity to take place, applications dynamically
construct an HTML page within the server based on inputs from the application’s user. The
page is initially an HTML template containing data placeholders that are completed by user
inputs to form hard-coded strings. These strings will eventually be converted to code when
they are presented to the browser.

The problem begins to occur when the untrusted user inputs manage to make their way into
vulnerable contexts without proper sanitization. As these unsanitized inputs are presented back
to the browser through vulnerable contexts, applications may become vulnerable to XSS. A
vulnerability context is the environment surrounding the data placeholders in the template.
These contexts, namely (1) HTML element content, (2) HTML attribute value, (3) URI query
value, (4) CSS value, and (5) JavaScript value [6][7], are usually, but not necessarily, bound
by quote delimiters. Table 1 shows examples of the HTML and Attribute contexts with
different delimiters, i.e., single, double, and no quotes [8]. The input represents the data

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3753

placeholder in the template.

Table 1. Web Application Injection Context
Examples

Context Single Quoted Double Quoted Unquoted
HTML - - <p>input</p>

Attribute <p id=’input’></p> <p id="input"></p> <p id=input></p>

An XSS vulnerability exploit is successful when there is a syntactically correct insertion of

the malicious payload in place of the data placeholder, where a part of the payload expands
out of the vulnerable context. In other words, often the malicious payload will be executed in
the browser only after it has broken out of the context it is currently in. This follows what
Lekies et al. pointed out, i.e., that the structure of a payload often consists of a break-out
sequence, an exploit string and an escape sequence [7]. The break-out sequence is the first part
of the payload to escape the current context where script execution is possible. The exploit
string is the part of the payload that is executable, while the escape sequence is the part that
voids the trailing string after the placeholder in order to avoid interfering with the execution
of the exploit string. To illustrate an example, let us look at the Attribute context in Table 1
and consider its exploit string: <script>alert(1)</script>. We will see that if we
are to execute the exploit string successfully in the output, all we need is to break out of a
single, double, or unquoted Attribute context that is present before the data placeholder. To
do this, we append the delimiter ’>, ">, or >, accordingly, in front of the exploit string to
obtain an HTML output string, as follows:

Note that no escape sequences are required in this case, as the trailing ’>, ">, and > strings
have now merely become plaintext that precedes the closing tag </p> in the HTML.

All in all, relevant solutions need to be applied at appropriate vulnerable contexts to nullify
malicious strings in the untrusted input. This is especially true for strings that match the
possible break-out sequence of the context and the subsequent exploit string.

2.3 The Critical Need for Open-source Cross-site Scripting Filters
In order to prevent XSS vulnerabilities from being exploited, XSS filters have become a
necessary tool for web applications. These filters are applied to the server-side code when
receiving user inputs or when supplying outgoing HTML to external processors. In general,
XSS filters contain sanitization functions that either remove certain keywords (e.g., script,
javascript and eval) or encode special characters (e.g., single and double quotes), each

Listing 1: Exploit Examples
<!-- Single Quote -->
<p id=’’><script>alert(1)</script>’></p>

<!-- Double Quote -->
<p id=""><script>alert(1)</script>"></p>

<!-- No Quote -->
<p id=><script>alert(1)</script>></p>

3754 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

of which has a certain meaning to the server- or client-side code.
The task of developing filters as open-source software has since become imperative to the

development of web applications. However, we believe that this task should involve a party
apart from web application developers as it demands web security expertise. By making these
filters available for free, a great service can be provided to web developers who would feel
secure to run their applications and help web enterprises move forward.

3. Experimental Setup
The goal of this experiment is to evaluate the performance of filters in preventing well-known
XSS attack payloads in web applications. Specifically, the experiment aims to help us (1)
assess the effectiveness of each filter in preventing attacks and (2) verify that there is no impact
on the benign payloads going through each filter. What follows is the description of our
experimental setup, which includes our methods of (1) collecting payload test cases, (2)
preparing the vulnerable web application, (3) setting up XSS filters, (4) automatic testing, (5)
determining successful attacks, and (6) modifying filter settings in our experiment.

3.1 Payload Collection
The experiment requires a set of well-known XSS attack payloads and benign payloads as test
cases. This sub-section describes how we obtain our payloads.

Table 2. Carriers in Malicious Payloads
Type Payload Examples Carrier Percentage (%)
Event1 <IMG SRC=’image.jpg’

onclick="alert(’XSS’)">
onclick 60.3

Script2 <script>alert(’XSS’)</script> script 27.7
URI3 href 12.1

1 Event Attributes, 2 Script Elements, 3 URI Atttributes

For the malicious payloads, we obtained the raw set by manually collecting from several
security organization websites that supply common XSS attack payloads prepared for testing
and research purposes [9][10][11][12]. We then ran them on the Mozilla Firefox browser and
selected 382 successfully executed exploit strings in the HTML context (see Section 3.2 for
more details) as our test set. We define the part of the payload that bears the exploit strings as
the carrier. Table 2 denotes the three types of carriers in HTML element payloads and
provides examples. All the exploit strings include scripts to trigger an alert message box when
executed.

Some web applications, such as blogs and wikis, allow users to format input texts in a
certain part of the HTML page and to share links from other resources among different users.
We treat these forms of input texts and sharing of links as benign payloads. In our attempt to
examine the extent of a filter’s ability to correctly handle these types of payloads, we carefully
select 175 benign payloads from several sources [13][14][15][16] to act as our second test set.
To represent possible user inputs in general applications, the set consists of alphanumeric
character texts, with or without special characters, in respect of the HTML input element types
such as dates, time and files [17]. It also consists of syntactically inert HTML tags and
attributes in respect of image and text-related HTML elements [18] to represent possible inputs

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3755

in user-customizable applications.

Finally, the characteristics of the benign payloads are shown in Fig. 1 and an overview of
the HTML elements in both test sets is shown in Fig. 2. We refer to the elements in the
intersection as common elements. These elements are intended to enrich the functionality of
an application, but they can also be abused while carrying malicious payloads.

3.2 Model of Vulnerable Web Application and Context
Our vulnerable web application has a single input form where a user submits an input payload.
Upon submission, the server receiving the payload from the browser will use it to invoke the
filter. After being sanitized, the payload appears in the browser.

As shown in the examples of Section 2.2, each payload can be embedded into multiple
vulnerable contexts at the program output. However, we employ one vulnerable context in our
application because, although some of the filters provide different sanitization routines for
different contexts, the other filters do not. This suggests that either the filters are built only to
protect a single context or that they generically perform sanitization on payloads. In other
words, they would sanitize a single payload equally in different contexts, which implies that
they are context-insensitive. Therefore, for the sake of consistency, we created our web
application to be vulnerable only in one context; the HTML context.

We place the filters right before the final output (i.e., HTML output) in the application’s
server-side code. Additionally, because the filters in this study are implemented in different
languages, we create three separate but similar vulnerable applications in JSP, Node.js and
PHP.

3.3 Dynamic Open-source Cross-site Scripting Filters
We selected 12 available dynamic open-source XSS filters in current use: jsoup Java HTML
parser or jsoup [19], Lucy-XSS [20], XSS HTML Filter [21], xssprotect [22], sanitize-html [23],
secure-filters [24], xss [25], xss-filter [26], HTML Purifier [27], PHP Anti-XSS [28], PHP-
XSS-Filter [29], and xss_clean [30]. These filters are designed to provide protection against
well-known reflected, stored, and/or DOM-based XSS attacks.

Fig. 1. Characteristics of Benign Payloads. Fig. 2. Overview of Payload Test Set.

3756 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

Table 3. Cross-site Scripting Filters, Language and Filtering Types

Name of
Filters

Version
Used

Filter
Language

Subject
Policy

Input
Form

Encoding
or

Escaping

HTML
Validation

WL BL String Parse
jsoup 1.12.1 Java • • •
Lucy-XSS 1.6.3 Java • • • •
XSS HTML Filter 1.5 Java • • • •
xssprotect 0.1 Java • • •
sanitize-html 1.20.0 Node.js • • • • •
secure-filters 1.1.0 Node.js • • •
xss 1.0.6 Node.js • • • •
xss-filter 0.5.3 Node.js • •
HTML Purifier 4.11.0 PHP • • • •
PHP Anti-XSS 1.2b PHP • • • •
PHP-XSS-Filter 1.1 PHP • • •
xss_clean - PHP • •

For the purpose of analysis, the 12 filters are classified, as shown in Table 3, into four

categories based on their main filtering types: subject policy, input form, encoding or escaping,
and HTML validation. The first category constitutes the subject policy of strings, or a set of
strings via regular expression (regEx), used for sanitization. That is, a whitelist policy (WL)
lists the allowed elements, while a blacklist policy (BL) lists the disallowed elements. The
second category is related to the form of the input to be searched, as in string or parse tree
(parse), to identify a set of whitelisted or blacklisted elements. The third category represents
special character encoding or escaping (i.e., converting untrusted inputs into passive
characters). Lastly, HTML validation filters payloads by validating their HTML structure.

In this experiment, we use the default settings of filters to closely match what would be
employed by a naïve user. We use the latest version of each filter (at the time of this writing)
and will consider newer versions of filters in our future work. Below, we briefly explain the
settings we used for the experiments.

• jsoup. We use the available basic whitelist and add the attribute id to the allowed
attribute list via the addAttributes function. We note that all the other filters are
set to allow the attribute id in the default setting (see Section 3.5).

• Lucy-XSS. We use the default whitelist filter security policy of the lucy-xss-
default.xml file.

• XSS HTML Filter. We use the available whitelist policy in the HTMLFilter.java
file that consists of a list of safe entities, including tags (e.g., a, em, and img) and
attributes (e.g., href and src).

• xssprotect. We use the available blacklist policy in the XSSFilter.java file for
the default setting. This consists of a list of forbidden elements, such as tags (e.g.,
script, embed, and object), attributes (i.e., any attributes containing the on
keyword), and attribute values or schemes (e.g., javascript:, vbscript:, and
mocha:).

• sanitize-html. We use the available default option, which contains a whitelist of
allowed tags (e.g., h3, b, and strong) and allowed attributes (e.g., href), as well
as a blacklist of forbidden tag elements (i.e., script, style and textarea).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3757

• secure-filters. As opposed to the other filters in our study, it is the only filter that also
provides sanitization functions for contexts other than HTML such as JavaScript,
URI, and CSS. However, we use the HTML context sanitization function (for reasons
explained earlier in this section).

• xss. We use the available default whitelist that contains allowed tags (e.g., a, br, and
code) and their respective attributes (e.g., href for the a tag and src for the img
tag).

• xss-filter. We use the available blacklist, which contains prohibited event attributes
such as onclick and onfocus.

• HTML Purifier. We use the default configuration of the
HTMLPurifier_Config::createDefault() function.

• PHP Anti-XSS. We use the whitelist filter, which will return strings with patterns
containing only alphanumeric characters (i.e., combinations of letters and numbers),
successively with the blacklist filter.

• PHP-XSS-Filter. We use the available function, filter_it() to call the filter.
• xss_clean. We use the available function clean_input() to call the filter.

Overall, we found that all the filters provide checks on HTML tags. Additionally, all but
secure-filters and PHP Anti-XSS provide checks for HTML attribute elements. Similarly, all
but Lucy-XSS, secure-filters, PHP Anti-XSS, and xss-filter provide checks for URI schemes.
Additionally, all filters, with the exception of jsoup, XSS HTML Filter, secure-filters, and PHP
Anti-XSS, perform checks for CSS or style tags. Although, jsoup provide checks for URI values,
no filter provides checks for JavaScript values.

3.4 Test Methodology
We apply the technique of black-box testing [31] to help us automatically probe and identify
security vulnerabilities in a web application without having to access the application’s internal
structure (i.e., its source code).

In our experiment, we avoid using web application scanners because a study has shown
that these are prone to false negatives [32]. Instead, we create our own automated XSS testing
framework to assess the filtering capabilities of filters.

We first prepare the payloads, as a single batch for the testing framework. The framework
then submits the payloads to the server, i.e., the web applications equipped with XSS filters.
The server receives one payload at a time and uses this as an argument to invoke the filter. The
filter provides the sanitized payload to the application, which is included in the HTTP response
that is sent back to the browser. Eventually, the framework reports whether the sanitized
payload has been correctly or incorrectly filtered by the filters (see Section 3.5).

We use a 32-bit Ubuntu 16.04 LTS machine with 3.8GB of memory to conduct all
experiments and a 3.20 GHz Intel Core i5 650 processor to host the web application. For the
PHP and Node.js filters, we use PHP version 7.0.33-0ubuntu0.16.04.1, Apache Server version
2.4.18, and Node.js version 4.4.2. To execute the Java filters on the Netbeans IDE 8.0.1, we
use Glassfish server 4.1. The browser we use is Mozilla Firefox version 65.0.

3.5 Identification of Correct Filtering
Below, we explain how we identify whether the malicious and benign payloads are correctly-
filtered in this experiment. For malicious payloads, by using Selenium WebDrive [33], we
check to see if the scripts in malicious payloads are no longer executable by observing the
absence of popup boxes in the web page response.

3758 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

In certain cases, scripts may require an extra action before they can be executed. For
example, the call to the alert function in the following payload is only executed when the user
clicks on the image:

.
To counter this problem, we add the same identifier to each of the payloads via the HTML id
attribute. Then, we add a jQuery trigger function in our vulnerable web application that
calls the identifier from the payload and triggers any existing HTML events that are associated
with it. To illustrate this, the identifier is added to the payload as follows:
,

which will be triggered by the following function:
(’identifier’).trigger(

’onclick’,
// other HTML events

);.
In the case of benign payloads, our checking for successful filtering is not done only by

observing the changes on the payload in the web page response alone. This is because some
filters perform tag balancing for tags that are missing or unbalanced. In another case, some
filters, such as Lucy-XSS, provide information on what was removed from the input. Therefore,
we determine the correctly-filtered benign payloads by comparing the HTML structure based
on the abstract syntax tree of the payload with the output [34] and check whether there are any
deletions (while ignoring additions) from the input. Then, we manually verify whether there
are any changes to the payload in the output strings in the final check.

3.6 Modification of Filter Settings
In our attempt to identify possible issues in the sanitization of payloads in the as-is condition,
we preemptively explore the performance of the filters in their default settings. That is to say,
based on the idea that a filter’s main goal is to prevent XSS, we reconfigure the settings of the
filters so that they sanitize malicious payloads that were not correctly sanitized in the initial
test. Meanwhile, to review their performance against benign payloads, we add our benign
element set to their whitelist. If the filters achieve perfect results on malicious payloads, we
can determine whether modifications influence their ability to handle benign payloads.
Additionally, our modification of the configured settings involves the examination of the
filtering techniques individually.

Theoretically, we assume a filter should produce highly correct filtering against both
malicious and benign payloads. For the purpose of elaboration, the output results of each
category are discussed with respect to the performance issues in subsequent sections.

4. Analysis and Results
To analyze the performance of the 12 filters on a total of 382 malicious XSS payloads and 175
benign payloads, we classify the filtered outputs according to three criteria, which we define
as follows:
1. Correctly-filtered: Popup boxes do not appear in the response page, indicating that the

malicious payloads are properly filtered. For example,
(a) the malicious payload, <script>alert(’XSS’);</script> becomes

alert(’XSS’); or,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3759

(b) the benign payload, Safe Text remains as is after going through
the filter.

2. Under-filtered: Popup boxes appear in the response page, indicating that the malicious
payloads are improperly filtered, thus allowing unwarranted execution in the browser.
For example,
(a) the malicious payload, <script>alert(’XSS’);</script> remains

as is even after being filtered or,
(b) the malicious payload,

<scr<script>ipt>alert(’XSS’);</scr</script>ipt>
becomes <script>alert(’XSS’);</script> after being filtered.

3. Over-filtered: Payloads are changed in the response page, indicating that the benign
payloads are improperly filtered. For example, the benign payload, Safe
Text becomes Safe Text or Safe Text.

Fig. 3. Utilizability of XSS Filters Against 382 Malicious Payloads and 175 Benign Payloads.

4.1 Performance of Filters
Fig. 3 presents the utilizability of the 12 filters for 382 malicious payloads using the default
settings of filters. Four filters, namely: sanitize-html, secure-filters, PHP Anti-XSS and PHP
XSS-Filter, perform well by correctly filtering all malicious payloads. Based on this result, we
are inclined to believe that these filters are utilizable in real-world applications to prevent well-
known XSS payloads. The following five filters, namely: jsoup, XSS HTML Filter, xssprotect,
xss, and HTML Purifier, perform correct filtering more than 97% of the time. While xss_clean
performs correct filtering slightly more than 90% of the time, and Lucy-XSS more than 70%
of the time, xss-filter manages to correctly filter only about half of all malicious payloads.

As for the utilizability of the filters on 175 benign payloads, none of the filters secure 100%
success. xss-filter and xss_clean performed excellently but each had one non-success.
xssprotect, Lucy-XSS, and HTML Purifier succeed acceptably with correct filtering more than
92% of the time, surpassing xss, jsoup, and sanitize-html, which succeeded in 74%- 87% of
the payloads. Quite disappointingly, XSS HTML Filter, secure-filters, and PHP-XSS-Filter
secured slightly more than half of the payloads. PHP Anti-XSS was successful 13% of the time.

3760 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

In general, we can say that most of the filters are reasonably effective at preventing the
majority of well-known XSS payloads via their default settings. However, they are not as
effective in handling benign payloads. We will identify some of the issues of ineffective filters
in particular cases in this study. We will also discuss these issues in reference to the two
categories mentioned in the earlier part of this section, i.e., the under-filtering and over-
filtering.

4.1.1 Issues on Under-filtering
Of the 12 filters we examined, we ascribe failure to secure 100% correctly-filtered malicious
payloads in eight of them to under-filtering. That is to say, these filters are not sufficiently
equipped to handle the malicious payloads, resulting in their unwarranted execution in the
browser.

We contend that some of the common issues of under-filtering are related to payloads with
URIs embedded in href attributes. We discover that the attacks are URIs that contain
obfuscated scripts. However, even though jsoup and HTML Purifier check URI values, they
were yet unable to check whether the values contain malicious scripts. We later learn that in
the case of jsoup, it only performs to validate the payloads that contain only UTF-8 characters.
This leads us to believe that the issue of under-filtering has something to do with the filters’
ability to first identify whether the linked page is legitimate or malicious.

We would also like to note that either 1) the exclusion of elements with possible carriers in
the blacklist, as is the case for xssprotect, xss-filter, xss_clean, or 2) the inclusion of these
elements in the whitelist, as is the case for Lucy-XSS, is the reason for under-filtering. For
example, the form attribute is a possible carrier of the button element [10]. If the use of
this element as an input to the applications is allowed, the whitelist policy of the filter should
not include the form attribute, while the blacklist policy should. In a case where the
application does not allow such an element, the element itself should be excluded from the
whitelist and included in the blacklist.

Additionally, we also find that filters that process string input forms, either as the main
routine or a part of its sanitization routine, may allow cases of malicious scripts with
obfuscated characters in the payload to pass through unfiltered. In other words, when special
characters are replaced with their respective encoded entities, there is a chance they will be
automatically decoded upon reaching the browser. For instance, filters that prevent the
javascript: scheme from being present in the payload would mistakenly allow an
obfuscated version of the scheme, i.e., javascript:, to pass through unfiltered.

4.1.2 Issues on Over-filtering
Here, we ascribe the lack of 100% correctly-filtered benign payloads in 10 filters to over-
filtering. This implies that these filters have difficulties handling benign payloads. Common
over-filtered payloads are those with elements belonging to HTML classes and texts with
special characters. We observe that the inability of some filters to handle benign payloads
successfully seems to be related to the following two possible reasons: (1) the use of API
functions that blindly encode any special characters present in text payloads, and (2) the
exclusion of syntactically inert HTML elements in the whitelist.

4.1.3 Summary of Analysis and Results
In summary, when using their default settings, filters are generally more able to handle under-
filtering than over-filtering. The common critical issues in under-filtering are the handling of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3761

malicious URIs, the entries in the policy and the search on string-based input forms. Whereas
in over-filtering, they are the use of encoding functions and the insufficient entries in whitelist.

In extension, we generalize the benefits of the filters. In their default setting, we may say
that filters with low under-filtering and high over-filtering are utilizable for high-security risk
applications, such as banking and electronic stocks, or applications that do not accept HTML
strings as input. As for the filters with high under-filtering and low over-filtering, they are
utilizable for applications that allow users to submit syntactically inert HTML, such as blogs
and wikis, although this risk compromising the security of the application.

4.2 Improving Filter Performance
We attempt to find ways to improve the filter performance by observing two conditions. We
aim to find out (1) whether there is another setting for each filter that can enhance the filter’s
ability to correctly filter malicious payloads and (2) whether using the reconfigured setting
affects its performance against benign payloads. For this purpose, we reconfigure the default
settings for the filters and measure their performance based on correct filtering. We do this
either by utilizing other available functionalities provided by the filters, or by modifying the
filter’s policy. That is, in order to sanitize properly malicious elements that were previously
under-filtered, we set the reconfigured settings for the following filters, listed based on the
policy used, as such:
1. Whitelist-only filters:

• jsoup, XSS HTML Filter, and HTML Purifier. We remove the href attribute
of the a tag.

• Lucy-XSS. We remove the elements embed, form, iframe, input, meta,
object, and script, as well as the attribute href from the a element.

2. Blacklist-only filters:
• xssprotect. We add href and xlink:href to the attributes list of the

blacklist, remove the character : from the javascript: scheme in the
attribute values list, and remove the element form from the element list.

• xss-filter. We enable the escape option that encodes all < and > symbols.
• xss_clean. To the blacklist, we add the tag base, the attribute href, and the

: for malicious payloads that use javascript&colon instead of
javascript:. We also modify the regEx on to \/?on for payloads that
use events starting with /on instead of on. Finally, we set the closing bracket
of each tag > as optional.

3. Whitelist and blacklist filters:
• sanitize-html and PHP Anti-XSS. We did not make changes for malicious

payloads because there were no under-filtered payloads.
• xss. We remove the attribute href of the a element from the whitelist.

Here, we consider common elements that were previously under-filtered as malicious. We
also add all elements, if not already present, from our benign test set to filters with a whitelist
policy (refer to Fig. 2 for an overview). Note that two filters, i.e., secure-filters and PHP-XSS-
Filter, are excluded from this experiment. While only utilizing a blacklist policy, these filters
achieved 100% success with malicious payloads; thus, they cannot be reconfigured to improve
their performance with benign payloads.

We presume that adding elements to a filter’s whitelist will increase its correct filtering
performance on benign payloads. In contrast, adding common elements to a filter’s blacklist
will decrease its performance. Our results show that the filters with reconfigured settings could

3762 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

filter all malicious payloads. Nevertheless, their handling of benign payloads showed mixed
results.

Fig. 4. The Performance Differences of XSS Filters Against 175 Benign Payloads for the Default and

Reconfigured Settings.

Fig. 4 presents the differences of the filters’ performance on benign payloads with the
default and reconfigured settings. We see that, when using whitelist-only filters, jsoup and XSS
HTML Filter improve their performance against benign payloads by about 20%, while HTML
Purifier is slightly improved by 3%. However, Lucy-XSS showed a slight decline of about 5%.
Meanwhile all whitelist and blacklist filters improve their performance by 6% to 30%. In
contrast, for blacklist-only filters, xssprotect shows a slight decline in performance of about
2%, while the performance of xss-filter and xss_clean drops significantly by 35% and 18%,
respectively.

Next, we inspect the over-filtered payloads. As expected, all of the filters over-filtered
payloads containing the common elements (e.g., the href attribute of the a tag). This is
caused by the removal of those elements from the whitelist or the inclusion of them in the
blacklist, which was done in an attempt to prevent malicious payloads. This is an indication
that there is a conflict in deciding whether or not to allow elements that can both be benign
and malicious.

We also found that the addition of benign elements to a filter’s whitelist policy improved
the performance on benign payloads for most filters, except Lucy-XSS. The slight increase in
performance may be caused by the fact that most elements were already present in the default
whitelist. Likewise, the reduced performance of Lucy-XSS may be due to the additional
configuration required for nested elements. To illustrate, for the benign payload, <p>This
is an <i>italic</i> text</p>, the i tag should be declared in the policy as an
allowed nested element for the p tag. HTML Purifier also required this configuration; however,
unlike Lucy-XSS, most of the rules for nested elements were already present in its default
whitelist, which explains why its performance did not decline. This shows that, by adding rules
for nested elements, Lucy-XSS’s performance can be improved, and our earlier presumption
still holds. Additionally, the performance of PHP Anti-XSS declined significantly because of
the encoding and upper- to lower-case character transformation function.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3763

The performance of blacklist-only filters declined after reconfiguration. However, the
performance reduction of xssprotect is lower than its counterparts; this may be because of its
different input form. xssprotect performs a search on the parse tree rather than the string, which
is the form used by xss-filter and xss_clean. In fact, the significant decline in performance for
xss_clean may be caused by our modified regEx for the on keyword, which over-filters 17%
of our benign test set containing the keyword. As for xss-filter, the reduced performance is due
to the activation of the encoding function, which we also see for PHP Anti-XSS. This can have
a negative effect on a filter’s performance on benign payloads. It is noteworthy that PHP Anti-
XSS, xss-filter, and xss_clean, also use blacklists and string-based input forms. As for whitelist
and blacklist filters, the over-filtered payloads are similar to those of the whitelist-only filters,
though their performance did not decline because there were more elements added to the
whitelist, as compared to those that were removed from the blacklist.

One thing worth mentioning is that two of our benign payloads containing special
characters happen to be similar to HTML tags. As the tag element is not included in any
whitelist, it was incorrectly sanitized by the filters. In another case, our JSP web application
includes the HTML charset attribute by default, resulting in the immediate encoding of two
internationalized domain names of the same payload class upon reaching the browser.
However, since there are only two cases of this type of payload, it does not significantly affect
the filtering results.

Next, we would like to find out whether it is possible for a filter to achieve perfect results
for both malicious and benign payloads. For this, we chose one filter, i.e., jsoup, which over-
filtered only the href attributes of the a tag. This time, we allowed the attribute in the policy
and then retested the filter with only the URI values of both the malicious and benign payloads.
Indeed, the filter is capable of correctly filtering all payloads. This suggests that it is possible
to achieve perfect results if the filter performs sanitization on the URI values. Since we
analyzed the filter only in the context of HTML, we can say that it is possible for the filters to
correctly handle both malicious and benign payloads within the context.

To recap, the executability of a malicious payload depends on the vulnerability context. In
section 3.2, we mentioned that the filters are insensitive to context; therefore, they might not
work as well in other contexts. To show that this is a problem, we tested our improved version
of jsoup and placed it in the Attribute context [35] and the JavaScript context1 in our web
application as shown below:

Listing 2: Filter in Attribute value context Listing 3: Filter in JavaScript value context

<img src=’img.jpg’
width=’Jsoup_filter(input)’>

// exploit string: ’
onerror=’alert(1);

// resulting HTML output:
<img src=’img.jpg’ width=’’
onerror=’alert(1);’>

eval(\"document.write(’+
Jsoup_filter(input))+’);\");

// exploit string: ’);%20alert(’1

// resulting HTML output:
eval("document.write(’’);
alert(’1’);");

1 https://security.stackexchange.com/questions/52558/exploit-document-write-with-unsanitized-user-input

3764 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

We then fed the application two malicious payloads that are executable in their respective
contexts. The payloads do not contain HTML tags; therefore, they are not executable in the
HTML context. We found that the filter under-filtered the payloads, which lead to the
execution of malicious script. These examples further confirm that even if a filter is utilizable
in the HTML context, it might not work the same in other contexts.

To summarize, our findings indicate that (1) there is certainly another setting for a filter
that can improve its performance, (2) reconfiguring the filter’s policy does effect the filter’s
performance on benign payloads, (3) it is possible that a filter can correctly handle both
malicious and benign payloads in the HTML context, and (4) the performance of filters in the
HTML context does not necessarily reflect their performance in other contexts.

Fig. 5. Performance According to Filtering Types with Reconfigured Settings on Benign Payloads.

4.3 Performance Based on Filtering Techniques
We observe that the performance of filters is very likely related to their filtering types and
their ability to recognize different HTML elements within the context of HTML. To validate
this assumption, we examine the degree to which a filter can correctly filter benign payloads
according to the filtering type. With the reconfigured settings, we enable each filtering type to
run separately at a time. That is, within each filter, we alternately enable each function that
works to sanitize payloads: (1) based on the policy and input form, (2) by performing encoding
and/or escaping on the payloads, or (3) by structuring the payloads via HTML validation. As
Fig. 5 shows, filters of the same policy perform differently with different input forms. We see
that when the input form is a parse tree, filters on the whitelist perform better (94%) than they
do with a string (84%). The same goes with those using a blacklist policy, which perform more
accurately with a parse tree (87%) than they do with a string (72%). Nevertheless, when
comparing the performance on the basis of different policies with different input forms, we
find that filters using whitelist perform better in either form.

Our examination of filters, using the same policy but with other filtering types, reveals that
both the whitelist and the blacklist perform better with HTML validation (84% and 79%,
respectively) than they do with encoding or escaping (79% and 67%, respectively). Lastly,
when we compare the performance of filters of different filtering types working in
combination with different policies, it appears that those combining encoding or escaping and
HTML validation work better with the whitelist, than they do with the blacklist.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3765

All in all, improvements on handling benign payloads are more likely when filters are made
to run on filtering types based on the right combination of policy and input forms. The filter’s
performance would likely improve from using a whitelist policy with a parse-tree input form
combined with encoding or escaping and HTML validation.

5. Recapitulation
A web application allows users to interact with it by generating a web response based on a
user input. The dynamic nature of the application, while necessary, makes it vulnerable to web
attacks and exposes it to security risks. While legitimate users submit valid inputs to obtain
authorized information from the application, an attacker crafts malicious inputs or payloads to
perform web attacks, such as XSS, which can cause the application to execute unauthorized
actions. Thus, in order to prevent these actions, web developers have applied defense
mechanisms to thwart attacks. One of such defense mechanisms is open-source XSS filters.
An XSS filter with adequate capability sanitizes incoming payloads in the server prior to
returning them to the browser via the web application’s response. During this sanitization
process, the filter should be able to disarm malicious payloads effectively and handle/facilitate
benign payloads without destroying their original intention. However, we find that existing
XSS filters tend to suffer, to various degrees, from issues of under-filtering malicious payloads
and over-filtering benign payloads. We have analyzed 12 dynamic open-source XSS filters
and assessed their filtering capabilities according to their degree of success or failure. First,
we used their default settings, which is typically for this type of study, without making changes
[36][37]. We found that only some filters are satisfactory in handling malicious payloads,
although they are not equally capable of handling benign inputs. However, our experimental
results using reconfigured settings indicate that each filter has at least one configuration that
successfully sanitizes all of the well-known XSS payloads we used. However, users with little
to no background knowledge in security may encounter difficulties finding the best filter
configurations. We also discovered that it is more difficult for filters to manage benign
payloads than malicious threats. Most filters tend to over-filter benign payloads, thereby
limiting the intended interactive response of users. This is especially true for filters that utilize
a blacklist and a string-based search on payloads. Our finding is consistent with the work of
Bates et al., who explored the harmful use of regEx in preventing malicious payloads [38].
Although we found that it is possible for a filter to prevent malicious payloads while allowing
benign ones, the solutions in this paper are contingent upon our way of testing. That is to say
that we tried to solve a filter’s issues only after obtaining information related to under- and
over-filtered payloads. Therefore, a more robust and automated solution is required to prevent
XSS in real-world applications. The effectiveness of a filter depends on its policy coverage.
Unfortunately, the completeness of a policy can never be guaranteed. This is because attackers
can find new ways to circumvent filters and the development of new technologies might
introduce new attack payloads, thereby making it difficult for filter developers to maintain the
policy. Additionally, the fact that some HTML elements can be used to carry both a benign
and a malicious value causes a trade-off between under-filtering malicious payloads and over-
filtering benign payloads. The trade-off between under- and over-filtering (in more general
terms, false negatives and false positives), which effects the filter’s performance in terms of
precision and recall, is a prevalent issue in security engineering. This has been addressed in
numerous studies [39][40][41]. Also, current filters are not context-sensitive, i.e., the filters
do not consider the context in which the user inputs are used in the output HTML. Rather, the
filters prevent XSS by searching for certain patterns or particular elements that are considered

3766 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

safe or malicious; this method can be error-prone and produce false results. This implies that
XSS vulnerabilities are context-sensitive [6][7]. Therefore, a context-sensitive filter is needed.
Normally, a context-sensitive filter would require the user of the filter to supply information
about the vulnerable context as an argument to the filter. This would allow the filter to
automatically apply appropriate sanitizers to act on malicious payloads [8]. As current filters
act as server-side prevention mechanisms, they may help to mitigate reflected and stored XSS;
however, they may not be as effective in preventing DOM-based XSS. Moreover, none of the
filters perform checks on JavaScript values. DOM-based XSS exploits the vulnerability in the
client-side code that modifies the DOM of the web page. As opposed to reflected and stored
XSS, where the vulnerability is caused by accepting a user input from the browser that flows
into the server, the flow of input data to the output function occurs in the browser itself during
DOM-based XSS. That is, the input does not reach the server.

Improving a filter’s ability to handle benign inputs can be achieved through several
strategies. First, the distinction between malicious and benign payloads can be improved with
context-aware filtering mechanisms in order to determine the correct type of input that should
be received at a particular point in the application. For example, HTML tags or functions
should not be allowed as attribute values. Secondly, we should also consider which string can
be used as a break-out sequence in the context. For instance, the string ’) contained at the
start of the payload, i.e., ’);%20alert(’1 in the example given in Listing 3, can be used
to break out of the JavaScript string value context. By providing information about the context,
the possible break-out sequence, and the allowed input type, we can improve the precision and
recall and use the filters as an XSS prevention mechanism. Lastly, additional checks should
be performed on URI values to determine if the URI contains malicious scripts, is hosting a
malicious application, or is hosting an application that is vulnerable to XSS. Several studies
have attempted this type of identification [42][13][43].

6. Related Work
This section summarizes existing analysis studies in the domain of XSS. McQuade [44]
investigated a low-cost open-source black-box web vulnerability scanner alternative to assist
agile developers working in small to mid-sized firms. McQuade found that the detection
accuracy and test-case coverage of open-source scanners are higher than those of proprietary
scanners. Suteva et al. [32] evaluated open-source web vulnerability scanners using a
vulnerable web application called WackoPicko. They performed evaluations to assess the
scanners’ effectiveness in detecting SQL injection and XSS vulnerabilities. Alternatively, our
work evaluates XSS filters, rather than web vulnerability scanners, by using a custom web
application to assess their weaknesses. Due to the evolution of open-source software
development [45], we evaluate open-source XSS filters.

Hill [46] analyzed and evaluated automated XSS tools based on their usability (i.e., ease of
use) and functionality. Scholte et al. [47] performed an empirical analysis to investigate how
to prevent SQL injection and XSS attacks based on the languages used and their type systems.
They determined that these attacks can be prevented by enforcing validation of data types.
Fonseca et al. [48] extended the work of Scholte and Balzarotti by studying the characteristics
of source-code defects that affect application vulnerability, particularly SQL injection and
XSS vulnerabilities. The authors performed analysis on code patches to compare the numbers
of vulnerabilities that exist in applications based on weak-type languages (i.e., PHP) and
strong-type languages (i.e., Java, C#, and VB). They concluded that applications are less
vulnerable to exploitation when written in strong-type languages. Weinberger et al. [8]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3767

analyzed sanitization practices in real-world applications. They compared the features
provided by web application frameworks with the features that real-world web applications
require. In contrast, we performed a comparative analysis on dynamic open-source XSS filters
and attempted to investigate whether the filters’ performance against XSS would affect their
performance against benign payloads.

7. Conclusions and Future Work
From our study, we have shown that getting a good and effective open-source XSS filter is
still an issue. On the default setting, several filters suffer from under-filtering but many more
suffer from over-filtering. We managed to successfully sanitize our set of malicious payloads
by adjusting the configuration settings of each filter; however, we observed that the filters’
performance towards benign payloads are still problematic. It appears that the effectiveness of
a filter depends, to a certain extent, on the filter’s policy, whether it is whitelist or blacklist,
and its input form. Additionally, there is a trade-off in being able to prevent malicious payloads
while allowing the usage of benign tags and attributes for HTML elements that can be used to
input both types of payloads. It is important to note that while the filters check for patterns or
characteristics of payloads that are malicious, they tend to ignore the vulnerability context in
which the payloads are received in the output HTML. The condition in which payloads are
allowed to break out of the context can be a main cause of injection-related attacks such as
XSS. Although it is possible to obtain perfect results for both malicious and benign payloads
in the HTML context, finding the filter’s appropriate setting to achieve this might not be trivial
for web developers, especially those with limited security knowledge. Therefore, one of our
aims is to help developers select suitable filters to ensure secure and safe web applications. At
the same time, we hope to offer new clues to filter developers who are seeking novel solutions
to improve filters. We suggest two possible directions for future work in a similar theme: (1)
the development or design of a filter that is more efficient and context-sensitive, and (2) the
design of an automatic filter policy update using the latest HTML specification.

References
[1] OWASP Foundation, “OWASP Top Ten.” [Online]. Available: https://owasp.org/www-project-

top-ten/, Accessed on: Mar. 20, 2019
[2] OWASP Foundation, “OWASP Top 10 2017,” 2017. [Online]. Available:

https://github.com/OWASP/Top10/issues, Accessed on: Feb. 26, 2019
[3] MITRE Corporation, “CVE Details: The Ultimate Security Vulnerability Datasource,” 2013.

[Online]. Available: https://www.cvedetails.com/vulnerabilities-by-types.php, Accessed on: Mar.
20, 2019

[4] The Hacker News, “The Hacker News — Cyber Security, Hacking, Technology News.” [Online].
Available: http://thehackernews.com/, Accessed on: May 09, 2016

[5] InfoSec Institute, “InfoSec Resources - How to Prevent Cross-Site Scripting Attacks.” [Online].
Available: http://resources.infosecinstitute.com/how-to-prevent-cross-site-scripting-attacks/,
Accessed on: Mar. 16, 2017

[6] J. Kallin and I. Lobo Valbuena, “Excess XSS: A comprehensive tutorial on cross-site scripting.”
[Online]. Available: https://excess-xss.com/, Accessed on: Mar. 22, 2017

[7] S. Lekies, B. Stock, and M. Johns, “25 Million Flows Later - Large-scale Detection of DOM-based
XSS,” in Proc. of ACM SIGSAC Conf. Comput. Commun. Secur. (CCS 2013), Berlin, Germany,
pp. 1193–1204, 2013. Article (CrossRef Link)

https://github.com/OWASP/Top10/issues
https://www.cvedetails.com/vulnerabilities-by-types.php
http://thehackernews.com/
http://resources.infosecinstitute.com/how-to-prevent-cross-site-scripting-attacks/
https://excess-xss.com/
http://doi.org/doi:10.1145/2508859.2516703

3768 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

[8] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, “A systematic analysis
of XSS sanitization in web application frameworks,” in Proc. of European Symposium on
Research in Computer Security (ESORICS 2011), Leuven, Belgium, 2011, Lecture Notes in
Computer Science, vol 6879, Springer, pp. 150–171, 2011. Article (CrossRef Link)

[9] D. Anderson, “XSSDB Exports.” [Online]. Available: http://xssdb.net/, Accessed on: Mar. 07,
2017

[10] Cure53, “HTML5 Security Cheatsheet.” [Online]. Available: https://html5sec.org/, Accessed on:
Mar. 07, 2017

[11] Kurobeats, “XSS Vectors Cheat Sheet.” [Online]. Available:
https://gist.github.com/kurobeats/9a613c9ab68914312cbb415134795b45, Accessed on: Mar. 07,
2017

[12] J. Manico and R. Hansen, “XSS Filter Evasion Cheat Sheet,” [Online]. Available:
https://owasp.org/www-community/xss-filter-evasion-cheatsheet, Accessed on: May 28, 2021

[13] M. Ter Louw and V. N. Venkatakrishnan, “Blueprint: Robust Prevention of Cross-site Scripting
Attacks for Existing Browsers,” in Proc. of 2009 30th IEEE Symp. Secur. Priv., Oakland, CA,
USA, pp. 331–346, 2009. Article (CrossRef Link)

[14] Microsoft, “Email Address test cases – Testing Testing 1,2,3.” [Online]. Available:
https://blogs.msdn.microsoft.com/testing123/2009/02/06/email-address-test-cases/, Accessed on:
Sep. 24, 2019

[15] D. Miessler, “SecLists.” [Online]. Available: https://github.com/danielmiessler/SecLists/,
Accessed on: Sep. 24, 2019

[16] W3Schools, “W3Schools Online Web Tutorials.” [Online]. Available:
https://www.w3schools.com/, Accessed on: Mar. 15, 2017

[17] MDN, “<input>: The Input (Form Input) element - HTML: Hypertext Markup Language | MDN.”
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input,
Accessed on: May 06, 2020

[18] MDN, “HTML elements reference - HTML: Hypertext Markup Language | MDN.” [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTML/Element, Accessed on: Sep. 24,
2019

[19] J. Hedley, “Prevent cross site scripting with jsoup.” [Online]. Available:
https://jsoup.org/cookbook/cleaning-html/whitelist-sanitizer, Accessed on: Feb. 26, 2019

[20] Naver Corp., “Lucy-XSS.” [Online]. Available: https://github.com/naver/lucy-xss-filter, Accessed
on: Feb. 26, 2019

[21] J. O’Connell, C. Hendersen, and M. Wever, Semb, “XSS HTML Filter: A Java library for
protecting against cross site scripting.” [Online]. Available: http://finn-no.github.io/xss-html-
filter/, Accessed on: Dec. 22, 2016

[22] G. Toonstra, “xssprotect.” [Online]. Available: https://code.google.com/archive/p/xssprotect/,
Accessed on: Feb. 26, 2019

[23] P’unk Avenue, “sanitize-html.” [Online]. Available: https://www.npmjs.com/package/sanitize-
html, Accessed on: Feb. 26, 2019

[24] Yahoo! Inc., “Secure XSS Filters.” [Online]. Available: https://www.npmjs.com/package/xss-
filters, Accessed on: Feb. 26, 2019

[25] Z. Lei, “xss.” [Online]. Available: https://www.npmjs.com/package/xss, Accessed on: Feb. 26,
2019

[26] L. Shi, “xss-filter.” [Online]. Available: https://github.com/superRaytin/xss-filter, Accessed on:
Feb. 26, 2019

[27] E. Z. Yang, “HTML Purifier - Filter your HTML the standards-compliant way!” [Online].
Available: http://htmlpurifier.org/, Accessed on: Dec. 22, 2016

[28] C. Bolat, “PHP Anti-XSS Library.” [Online]. Available: https://code.google.com/archive/p/php-
antixss/, Accessed on: Dec. 22, 2016

[29] Mario, “PHP-XSS-Filter.” [Online]. Available: https://github.com/JBlond/PHP-XSS-Filter,
Accessed on: Feb. 26, 2019

http://doi.org/doi:10.1007/978-3-642-23822-2_9
http://xssdb.net/
https://html5sec.org/
https://gist.github.com/kurobeats/9a613c9ab68914312cbb415134795b45
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
http://doi.org/doi:10.1109/SP.2009.33
https://blogs.msdn.microsoft.com/testing123/2009/02/06/email-address-test-cases/
https://github.com/danielmiessler/SecLists/
https://www.w3schools.com/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://jsoup.org/cookbook/cleaning-html/whitelist-sanitizer
https://github.com/naver/lucy-xss-filter
http://finn-no.github.io/xss-html-filter/
http://finn-no.github.io/xss-html-filter/
https://code.google.com/archive/p/xssprotect/
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/xss-filters
https://www.npmjs.com/package/xss-filters
https://www.npmjs.com/package/xss
https://github.com/superRaytin/xss-filter
http://htmlpurifier.org/
https://code.google.com/archive/p/php-antixss/
https://code.google.com/archive/p/php-antixss/
https://github.com/JBlond/PHP-XSS-Filter

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3769

[30] M. Bijon, “xss_clean.” [Online]. Available: https://gist.github.com/mbijon/1098477, Accessed on:
Dec. 22, 2016

[31] S. Kojarski and D. H. Lorenz, “Comparing White-Box, Black-Box, and Glass-Box Composition
of Aspect Mechanisms,” in Proc. of the 9 International Conference on Software Reuse (ICSR
2006), Turin, Italy, pp. 246–259, 2006. Article (CrossRef Link)

[32] N. Suteva, D. Zlatkovski, and A. Mileva, “Evaluation and Testing of Several Free / Open Source
Web,” in Proc. of 10th Conf. Informatics Inf. Technol., Bitola, Macedonia, no. Ciit, pp. 221–224,
2013.

[33] B. Muthukadan, “WebDriver API — Selenium Python Bindings 2 documentation.” [Online].
Available: http://selenium-python.readthedocs.io/api.html, Accessed on: Jul. 12, 2018.

[34] E. Gavryushin and V. Grinenko, “html-differ - npm.” [Online]. Available:
https://www.npmjs.com/package/html-differ, Accessed on: Sep. 24, 2019

[35] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise client-side protection against
DOM-based Cross-Site Scripting,” in Proc. of 23rd USENIX Secur. Symp. (SEC 2014), San Diego,
CA, USA, pp. 655–670, 2014.

[36] C. Arthur, “Why the default settings on your device should be right first time | Technology | The
Guardian,” 2013. [Online]. Available:
https://www.theguardian.com/technology/2013/dec/01/default-settings-change-phones-
computers, Accessed on: Oct. 21, 2019

[37] Panda Security, “Default Settings, and Why the Initial Configuration is not the Most Secure,” 2017.
[Online]. Available: https://www.pandasecurity.com/mediacenter/security/default-settings-initial-
configuration-not-secure/, Accessed on: Oct. 21, 2019

[38] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered harmful in client-side XSS
filters,” in Proc. of 19th Int. Conf. World wide web (WWW 2010), Raleigh, North Carolina, USA,
pp. 91-100, 2010. Article (CrossRef Link)

[39] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and a D. Keromytis,
“Detecting Targeted Attacks Using Shadow Honeypots,” in Proc. of USENIX Security Symposium
(SSYM' 2005), Berkeley, CA, USA, pp. 129–144, 2005.

[40] B. V. Chess and G. E. McGraw, “Static analysis for security,” IEEE Secur. Priv., vol. 2, no. 6, pp.
76–79, Nov.-Dec. 2004. Article (CrossRef Link)

[41] S. J. Murdoch and R. Anderson, “Tools and Technology of Internet Filtering,” Access Denied: The
Practice and Policy of Global Internet Filtering, The MIT Press, ch. 3, pp. 57-72, 2008.
Article (CrossRef Link)

[42] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes : A Client-Side Solution for Mitigating
Cross-Site Scripting Attacks,” in Proc. of 2006 ACM Symp. Appl. Comput. (SAC 2006), pp. 330–
337, Dijon, France, 2006. Article (CrossRef Link)

[43] C. Yue and H. Wang, “Characterizing Insecure JavaScript Practices on the Web,” in Proc of the
18th International Conference on World Wide Web, (WWW 2019), Madrid, Spain, 2pp. 961–970,
2009. Article (CrossRef Link)

[44] K. Mcquade, “Open Source Web Vulnerability Scanners : The Cost Effective Choice ?,” in Proc.
of Conf. Inf. Secur. Appl. Res., Baltimore, Maryland, USA, vol. 2014, pp. 1–13, 2014.
Article (CrossRef Link)

[45] M. Volpi, “How open-source software took over the world | TechCrunch,” 2019. [Online].
Available: https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/,
Accessed on: May 05, 2020

[46] G. Hill, “Comparison of Automated XSS Fuzzing & Injection Tools,” Abertay University.
[47] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “An empirical analysis of input validation

mechanisms in web applications and languages,” in Proc. of 27th Annu. ACM Symp. Appl. Comput.
(SAC 2012), Trento, Italy, pp. 1419–1426, 2012. Article (CrossRef Link)

[48] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira, “Analysis of Field Data on Web Security
Vulnerabilities,” IEEE Trans. Dependable Secur. Comput., vol. 11, no. 2, pp. 89–100, 2014.
Article (CrossRef Link)

https://gist.github.com/mbijon/1098477
http://doi.org/doi:10.1007/11763864_18
http://selenium-python.readthedocs.io/api.html
https://www.npmjs.com/package/html-differ
https://www.theguardian.com/technology/2013/dec/01/default-settings-change-phones-computers
https://www.theguardian.com/technology/2013/dec/01/default-settings-change-phones-computers
https://www.pandasecurity.com/mediacenter/security/default-settings-initial-configuration-not-secure/
https://www.pandasecurity.com/mediacenter/security/default-settings-initial-configuration-not-secure/
http://doi.org/doi:10.1145/1772690.1772701
http://doi.org/doi:10.1109/MSP.2004.111
http://doi.org/doi:10.7551/mitpress/7617.003.0006
http://doi.org/doi:10.1145/1141277.1141357
http://doi.org/doi:10.1145/1526709.1526838
http://doi.org/doi:10.13140/2.1.3360.0005
https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/
http://doi.org/doi:10.1145/2245276.2232004
http://doi.org/doi:10.1109/TDSC.2013.37

3770 Abu Talib et al.: Assessment of Dynamic Open-source
Cross-site Scripting Filters for Web Application

Nurul Atiqah Abu Talib received the BIT (Hons) in Computer System Security from
Universiti Kuala Lumpur, Malaysian Institute of Information Technology (MIIT), Malaysia,
in 2013. She is currently a Ph.D candidate in the Department of Computer Science and
Engineering at Hanyang University ERICA, Gyeonggi-do, South Korea. Her research
interests include web security, machine learning and program analysis.

Kyung-Goo Doh (corresponding author) received the B.S. degree in industrial engineering
from Hanyang University in 1980, the M.S. degree in computer science from Iowa State
University in 1987, and the Ph.D. degree in computer science from Kansas State University
in 1992. From 1993 to 1995, he was with the University of Aizu as an assistant professor. He
then joined the Department of Computer Science at Hanyang University ERICA, where now
is a professor. His primary research interests are programming languages, program analysis,
software engineering and software security.

