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Abstract 
 

With the rapid development of science and technology, several high-performance 
networks have emerged with various new applications. Consequently, financially or socially 
motivated attacks on specific networks have also steadily become more complicated and 
sophisticated. To reduce the damage caused by such attacks, administration of network 
traffic flow in real-time and precise analysis of past attack traffic have become imperative. 
Although various traffic analysis methods have been studied recently, they continue to suffer 
from performance limitations and are generally too complicated to apply in existing systems. 
To address this problem, we propose a method to calculate the correlation between the 
malicious and normal flows and classify attack traffics based on the corresponding 
correlation values. In order to evaluate the performance of the proposed method, we 
conducted several experiments using examples of real malicious traffic and normal traffic. 
The evaluation was performed with respect to three metrics: recall, precision, and f-measure. 
The experimental results verified high performance of the proposed method with respect to 
first two metrics.  
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1. Introduction 

With the rapid development of science and technology over the recent years, the variety of 
commonly-occurring internet traffic and types of application have also increased, 
consequently expanding network environments. Recently, this phenomenon has been further 
accelerated by developments such as 5G mobile telecommunication and edge computing.  

However, the frequency of malicious traffic has also increased simultaneously, and attack 
patterns have been diversified. This diversification has expanded the range of possible 
damages, including personal and confidential information leaks and incapacitation of certain 
corporate services, alongside the risk of financial damages. For instance, the quantity of 
emails containing malicious code disguised as important communication sent from public 
institutions to individuals have risen significantly. If the victim clicks the link included in 
such an email, the embedded malicious code is automatically executed on the victim's 
computer and personal information is stolen. Additionally, instances of services of important 
financial or administrative institutions of the country being halted by attacks through 
malicious traffic have also become more frequent [7-9].  

To reduce the damage caused by and to prevent such malicious attacks, network 
administrators are required to establish effective network management and security policies, 
and accurate detection and analysis of malicious behavior based on these policies has 
become imperative. Traffic classification is a field that has been studied for a long time and 
is the most basic field of research on malicious traffic detection and analysis [1-5]. There are 
various methods of traffic classification, such as payload signature-based methods, which 
use patterns of traffic flows, and deep learning-based classification methods, which operate 
by learning the traffic features.  

The payload signature-based methods exhibit the best performance in terms of accuracy 
and completeness. Various studies have been conducted on payload signature-based methods 
in traffic classification. However, these suffer from the problems of high computational 
duration and cost during the processing of a significant amount of traffic in real-time [10-14]. 
In particular, addressing this problem is critical to the maintenance of a high-speed network 
and managing a high volume of traffic data in accordance with the recent computational 
demands. 

To address the aforementioned problems in payload signature-based traffic classification 
methods, a deep learning-based traffic classification method has been studied. Besides 
learning the payload of traffic flow corresponding to a specific application, such a method is 
also capable of learning the characteristics of flow, such as flow size or the number of 
associated packets. Based on the particular features of incoming traffic, deep learning 
classifies it as malicious flow or normal flow. 

The deep learning-based traffic classification method is capable of addressing the 
problems faced by payload signature-based traffic classification methods, such as encrypted 
traffic classification or high computational cost and duration, and exhibits high performance 
in terms of accuracy. However, it remains highly dependent on the training data. If wrong 
data is included in the training set or the amount of training data is inadequate, it becomes 
difficult to extract satisfactory performance from the method [17-19]. In the field of network 
security, it is difficult to obtain raw data corresponding to malicious traffic and the selection 
of proper learning features to enable correct classification of malicious traffic is a 
challenging problem. Even with well-performing deep learning models and adequate raw 
data, the selection of inappropriate learning features could yield poor results [20-23].  
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Therefore, a significant amount of research has been conducted to ascertain a method of 
selecting proper learning features. In addition to the two aforementioned methods, new ones 
such as deep packet inspection (DPI)-based methods are also being developed [6, 24]. 

In this paper, we propose a method to detect malicious traffic by comparing the statistical 
characteristics of network flows. We calculate various features and information of a network 
flow and define the flow correlation index (FCI). By comparing the flow correlation indices 
of malicious traffic and normal traffic, we define a threshold for each flow and classify 
malicious flow based on these thresholds.  

The proposed method is similar to the deep learning-based traffic classification method as 
its operation is based on the study of past malicious traffic. However, the proposed method 
calculates the flow correlation index according to clearly defined features, disposing the 
necessity of selecting appropriate learning features. Moreover, as the flow correlation index 
is calculated based on the characteristics of the flow, it makes it possible to clearly classify 
malicious flows which comprise a mixture of malicious traffic and normal traffic. 

The rest of this paper is organized as follows. In Section 2, we will discuss the related 
work and, describe the detailed algorithm in Section 3. The experiments that have been 
conducted to evaluate the proposed method using actual malicious traffic are presented in 
Section 4. Finally, we conclude the paper and outline future research directions in Section 5. 

2. Related Works 
As mentioned in Section 1, traffic classification has been a well-studied topic over a 

significant duration because of its importance with respect to efficient network management 
and network security. Especially in the field of network security, several solutions exist that 
protect a system from intrusion, such as firewalls, anti-virus software, and authentication 
systems. However, the protection and prevention of intrusion depends on the successful 
detection of malicious traffic. Thus, precise identification of malicious traffic and its 
subsequent analysis is crucial in the defense against malicious attacks. Several methods of 
traffic classification exist, including port-based, signature-based and deep learning-based 
ones. The most widely studied methods are payload signature-based ones and deep learning-
based ones. 

Signature-based classification methods can, in turn, be sub-classified into statistical 
information-based, header information-based, and payload-based methods. The statistical 
information-based approach uses statistic information such as flow size, sequence, and 
vectors, but takes a long time to generate a signature and suffers from low accuracy. 

The header information-based approach uses flow header information such as IP addresses 
and port numbers. However, they do not use specific data to generate signatures, and are, 
therefore, not suitable for general use, because the data used to generate the signature is 
liable to change.   

The payload signature-based approach uses an automatic signature generation system to 
automatically extract the payload signatures of the target flows. A payload signature is a 
unique pattern corresponding to a particular application. This implies that network traffic 
generated in the same application has the same payload pattern, and such traffic can be 
classified by comparing its signature to patterns corresponding to the same application. 
Malicious traffic shares a common payload pattern just like normal network traffic and, thus, 
can be detected based on it. Although signature based-method exhibit high detection rate, 
accuracy, and coverage, they also suffer from several limitations. 
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Firstly, significant computational duration and cost is required to generate a traffic's 
payload signature. This is because signatures can be defined only by verifying all substrings 
that are common among the payload contents. In addition, the process of finding a common 
substring in the payload is complicated, which burdens the user. To solve this problem, a 
significant amount of research has been conducted to automatically generate payload 
signatures such as LASER (LCS-based Application Signature ExtRaction) [13, 14].  

LASER automatically generates an application signature, in the form of a sequence of 
substrings, by using a modified version of the LCS (longest common subsequence) algorithm 
[5]. The inputs of the LCS algorithm are two distinct byte streams of packet payloads and the 
extracted signature of the traffic. This method finds a common sequence of strings by using a 
backtracking matrix and comparing pairs of strings. Although payload signatures can be 
generated automatically using this method, it takes a long time to do so, like in the case of 
existing problems [10-12]. 

Deep learning-based classification methods classify the traffic by learning its 
characteristics. Recently, with the development of artificial intelligence (AI) technology, 
such methods have been heavily studied, and its high performance and ease of learning have 
been established. In addition, as various algorithms, such as convolutional neural network 
(CNN) and recurrent neural network (RNN) in deep learning, can be applied to classify 
malicious traffic. Since deep learning is being studied in many fields, classification method 
based deep learning has a high possibility of development [25, 26]. 

However, deep learning-based classification methods suffer from the limitation of having 
to ensure the quality of several factors such as learning data, deep-learning model, algorithm, 
and proper feature selection in order to ensure high performance. Among these factors, the 
selection of proper features is the most important, and several studies have been conducted to 
ascertain a method for this purpose [22]. Although several such methods exist, most of them 
are limited in usability, and are difficult to use universally because the features can be 
defined differently depending on the data. 

3. Proposed Method  
In this section, we explain the basic concept, system structure, and detailed algorithm of 

the method proposed. The structure of proposed method has been depicted in Fig. 1. The 
structure of the FCI system consists of Training and Testing.  

 

3.1 Structure of the FCI System 
Training is the process of determining the criteria based on which malicious flows are 

detected by calculating the characteristics of pre-classified malicious and normal traffic. This 
criteria value for classification is defined as a threshold and the set of thresholds is defined as 
a guideline.  

First, pre-classified malicious and normal traffic are separately fed into the system as 
inputs. The format of the traffic is taken to be pcap, which is preprocessed into a file in the 
fwp format. After preprocessing, Seed is generated by the seed generation module with 
inputs from malicious fwp files. The Seed is a text file that contains 5-tuples of malicious 
traffic. This is a fundamental concept in FCI Systems. We calculate the flow correlation 
index of the flow corresponding of a particular seed information and a given target network 
flow. After preprocessing and generation of seeds, guidelines are generated by the guideline 
generation module based on inputs from the Seed and preprocessed traffic. As mentioned 
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previously, the guideline includes the thresholds that act as the criteria for classification. 
After the operation of the guideline generation module, the optimization process is 
performed, and as a result, an optimized guideline is created. 

 

 
  Fig. 1. Entire Structure of Sequential Grouping Model 

 
Testing is the process of classifying input traffic as malicious or normal flow based on the 

guideline created during Training. It distinguishes malicious flow from network traffic based 
on seed information obtained via an external IDS (Intrusion Detection System) or firewall 
and the guideline obtained via Training. Malicious flows are extracted and classified from 
the target network traffic in the sequential grouping model module and the final output is 
derived. The final output includes detection results, classified information (grouping 
information), and the detection log. The detection results consist of recall, precision, and f-
measure. The detailed algorithms and module descriptions are described as follows. 

 

3.2 Flow Correlation Index (FCI) 
The most basic concept pertaining to the proposed method is the flow correlation index. 

Any network traffic consists of a certain number of packets, which carry certain information 
such as source IP, destination IP, etc. A network flow is defined as the collection of packets 
that share the identical 5-tuples of information (i.e. source IP, source port, destination IP, 
destination port, protocol). A session is defined as a bidirectional flow in network traffic [2].  

As the characteristics of flows occurring in the same session tend to be similar, we 
numerically calculate the characteristics of the two flows in a session and define their 
similarity to be the flow correlation index. Flow correlation index is, thus, composed of two 
indices: the similarity index and the connectivity index. The similarity index is a value that 
encodes the similarity between the statistical characteristics of the two flows, and the 
connectivity index is a value that encodes the similarity between the header information of 
the two flows.  

The features of the similarity index have been described in Table 1. We use packet inter 
arrival time (PIT) and packet size distribution (PSD) of the two flows to calculate the 
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corresponding similarity index. PIT5 and PSD5 denote the features of the first 5 packets 
except the TCP 3-way handshake. 

 
Table 1. Explanation of the Similarity Features  

Feature Explanation Function Range 

PIT_Mean 
PIT5_Mean 

PIT = Packet Inter Arrival Time of the Flow 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓𝑥𝑥) =  ∑ 𝑇𝑇𝑖𝑖
𝑚𝑚
𝑖𝑖=1
𝑚𝑚

  
(m : The number of Packet in Flow  𝑓𝑓𝑥𝑥 

𝑇𝑇𝑖𝑖 : Inter Arrival Time) 

0~1 

PIT 5 = PIT of first 5 packets 

PSD_Mean 
PSD5_Mean 

PSS5 

PSD = Packet Size Distribution of the Flow 
𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓𝑥𝑥) = ∑ 𝑃𝑃𝑖𝑖

𝑚𝑚
𝑖𝑖=1
𝑚𝑚

 
(m : The number of Packet in Flow  𝑓𝑓𝑥𝑥 

𝑃𝑃𝑖𝑖 :Payload Length) 
PSD 5 = PSD of First 5-packets 

PSS 5 = Packet Size Sequence of First 5 Packets 

 
To keep the calculations objective, we used Min-Max Normalization to change the feature 

value over a wide distribution to a value between 0 and 1. The feature values corresponding 
to the two flows were calculated as a similarity index using the Euclidean Distance. 
Euclidean Distance is the formula for the distance between two points in n-dimensional 
space. Euclidean Distance can be used to express the similarity of flow characteristics by 
expressing each feature value between the two flows as multidimensional coordinates. The 
higher the similarity between the two flows, the smaller is the difference between the values 
of each feature. Therefore, the similarity index is defined as the difference calculated using 
the Euclidean distance as shown in Eq. (1). 

 

SI�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦� = 1 −�∑ �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖(𝑓𝑓𝑥𝑥) − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖�𝑓𝑓𝑦𝑦��
2

5
𝑖𝑖=1     (1) 

 
We use the 5-tuples of information corresponding to the flow as a feature to obtain the 

connectivity index. The features of the similarity index have been described in Table 2. In 
this table, ST denotes the start time of the flow, and calculates the similarity between the 
start times of the two flows. SIP and DIP calculate the connectivity of the source and 
destination IP addresses of the flow, respectively. The connectivity of IP Address is 
calculated by reflecting the same number of bits in the 32-bit address. Similarly, SPT and 
DPT denote the connectivity of the source and destination ports of the flow, respectively. 
The connectivity of the ports is calculated by reflecting the same number of bits among 16 
bits. PROT takes the value 1 if the protocols of the two flows are the same and 0 if they are 
different. The connectivity index is calculated by combining the features with appropriate 
weights.  

 
Table 2. Explanation of the Connectivity Features  

Feature Explanation Function Range 

ST Start Time 𝛼𝛼𝑠𝑠𝑠𝑠�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦� = 1 −
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦)

𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
0~1 

SIP Source IP Address 
𝛼𝛼𝐼𝐼𝐼𝐼�𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦� = �

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦�
32

�
2

 0~1 DIP Destination IP Address 
SPT Source Port Number 

𝛼𝛼𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦� = �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦�

16
�
2

 0~1 DPT Destination Port Number 

PROT L4 Protocol 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦� = �
mean: fx. PROT ≠ fy. PROT

1: fx. PROT = fy. PROT � Mean 
or 1 
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The weights are greater than 0, less than 1, and the sum of all the weights must be 1, 

because the weights represent the reflection ratio of each feature in the connectivity index. 
Smaller weight units correspond to higher levels of sophistication of the resultant threshold. 
However, setting the weight unit to be too small increases the duration of the process, and so 
proper definition of the weight unit is necessary. We defined the weight variance unit to be 
0.01. Therefore, the connectivity index is defined as the sum of multiplied values between 
feature values and weights as shown in Eq. (2). 

The similarity and connectivity indices are calculated as numbers lying between 0 and 1. 
If the values are close to 1, the two flows are deemed to be similar, and if the values are 
close to 0, they are deemed to be dissimilar. For example, if the flow correlation index
between a malicious flow and a normal flow is calculated, the value is close to 0. In contrast, 
the flow correlation index between a malicious flow and another malicious flow is observed 
to be close to 1.  

 
CI�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦� = �𝑤𝑤𝑆𝑆𝑆𝑆 × 𝑓𝑓𝑆𝑆𝑆𝑆�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� + �𝑤𝑤𝐼𝐼𝐼𝐼 × 𝑓𝑓𝐼𝐼𝐼𝐼�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� + �𝑤𝑤𝑃𝑃𝑃𝑃 × 𝑓𝑓𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� + 

�𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦��  (where,∑ 𝑤𝑤𝑖𝑖4
𝑖𝑖=1   = 1)    (2) 

 

3.3 Sequential Grouping Model 
As mentioned previously, any network traffic consists of a large number of sessions and 

flows. Similarly, malicious traffic also consists of a large number of malicious flows. Our 
main goal is to classify normal and malicious flows precisely, and the basic aim of the 
proposed method is to identify malicious flows that are similar to known malicious flows by 
comparison. The target network traffic is generally commonly used network traffic that 
consists of normal and malicious flows, and a malicious flow used for the purpose of 
comparison is defined as the seed flow 

 

 
 

Fig. 2. An Example of Sequential Grouping Model  
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Grouping is the process of classifying similar flows based on the respective flow 
correlation indices and pre-defined thresholds between pairs of flows. The grouping process 
proceeds sequentially beginning with the seed flow, and the group classified during the first 
grouping operation is defined to be the seed group. Flows in the seed group consist of flows 
that are almost similar to seed flows. The flow correlation indices between one seed flow and 
target flows are repeatedly calculated, and flows with similar flow correlation indices are 
grouped together based on the defined threshold. In summary, in order to detect malicious 
flows in a target network traffic, the flow correlation index between the target network traffic 
and the seed flow is calculated, and the target flow is classified based on the value of the 
index and a predefined threshold. The overall process of the sequential grouping model has 
been depicted in Fig. 2. 

The threshold is a criterion for grouping, and so the detection performance is significantly 
dependent on the threshold setting. This necessitates the use of a sophisticated threshold 
setting algorithm. If the flow correlation index between two flows is calculated to be greater 
than the threshold, the two flows are considered to be similar, and the grouping process is 
performed. If the threshold is set to too high a value, there are several malicious flows that 
correlation index with seed flow is lower than a threshold. In that case, there will be a large 
number of undetected malicious flows. In contrast, if the threshold is set too low, there are 
several normal flows that correlation index with seed flow is larger than a threshold. In that 
case, there will be a large number of false positive malicious flows. The process of the 
sequential grouping model based on the flow correlation index and threshold have been 
depicted in Fig. 2. The grouping process proceeds sequentially and is repeated until there are 
no more similar flows. The threshold setting algorithm will be explained in greater detail in 
Section 3.4. 

 

3.4 Threshold Setting Algorithm 
As depicted in Fig. 2, the first grouping of the filter into the seed group proceeds by 

calculating the similarity index, and the second grouping is performed by calculating the 
connectivity index. Grouping based on similarity and connectivity continues repeatedly. The 
flow correlation index of each pair of flows is compared with the thresholds for each 
sequence of grouping, and grouping proceeds in a similar manner for each sequence.  

The threshold varies depending on the particular grouping sequence, necessitating its 
specification for each sequence. Therefore, when the flow correlation index is calculated for 
each grouping sequence, the weight value and threshold are defined as guidelines. Thus, for 
each sequence, grouping is performed based on the weight and threshold defined in the 
guideline. As depicted in Fig. 3, three separate cases arise while setting the threshold based 
on the flow correlation index. 

In the first case, the value of the connectivity index varies depending on the weight 
combinations. As in the first case, proper thresholds can minimize the number of false 
positives and false negatives. Via proper threshold setting, all malicious flows can be 
accurately detected. However, if the threshold set too high, several malicious flows will 
remain undetected. In this case, although the detection accuracy is 100%, the detection rate is 
low. In contrast, if the threshold set too low, although all malicious flows will be detected, 
normal flows can also be falsely detected as malicious. In this case, the detection rate is 
100%; however, the detection accuracy is low.  

As with the first case, appropriate threshold setting criteria are required. We define the 
largest flow correlation index value between the seed flow and the normal flow as the 
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threshold to maximize detection rate and accuracy. The threshold setting algorithm stores the 
threshold and weight combination in the guideline. The same process is repeated until the 
grouping no longer occurs. 
. 

 
Fig. 3. An Example of Threshold Setting Algorithm  

 
However, as the behavior of malicious traffic is more complicated and sophisticated, there 

exist several types of malicious traffic which are highly similar to normal traffic. In this case, 
the flow correlation index between the seed flow and a malicious flow can be lower than the 
maximum value of flow correlation index between the seed flow and the normal flows. If the 
flow correlation index between the seed flow and a malicious flow is lower than flow 
correlation index between the seed flow and a normal flow, undetected malicious flows will 
occur as depicted in the second case presented in Fig. 3.  

To address this problem, we apply the threshold balancing algorithm to adjust the 
connectivity index of normal flows. An example of applying threshold balancing has been 
depicted in Fig. 4. Threshold balancing is the process of readjustment of weights when the 
maximum flow correlation index with normal flows is less than the minimum flow 
correlation index with malicious flows. 

As mentioned in Section 3.2, individual connectivity features are calculated and multiplied 
with their respective weights to obtain the connectivity index and define the threshold. In 
order to obtain a reasonable threshold, we can adjust the weights corresponding to specific 
connectivity features. For example, the start times and ports of malicious flows can be 
similar to those of normal flow. In this case, the corresponding feature values are higher than 
those for several normal flows, leading to the detection of the associated malicious flow as a 
normal flow. To address this shortcoming, the weights are adjusted by assigning lower 
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weights to the start time and port features and higher weights to other features. The detailed 
threshold balancing algorithm has been described in Algorithm 1. 

 

 
Fig. 4. An Example of Applying the Threshold Balancing Algorithm  

 
The first step of Algorithm 1 is similarity threshold balancing. The initial similarity 

threshold is set to 1, and the similarity index is compared with the number of flows in the 
traffic. If the initial similarity threshold is greater than the similarity index of the flow, and 
the maximum similarity index with normal flows is smaller than the similarity index of the 
flow, it is confirmed if the flow has been grouped (in Alg. 1 line 1-4). If the flow has not 
been grouped, the initial similarity threshold is set to the similarity index of the flow, and 
similarity threshold is set to initial similarity threshold (in Alg. 1 line 6). 

Subsequently, the maximum value of the connectivity index with malicious flows and the 
minimum value of the connectivity index with normal flows are compared (in Alg.1 line 7, 
8). If the minimum connectivity index with normal flows is larger, the largest connectivity 
features with that flow are compared with the smallest connectivity features with the 
malicious flow (in Alg.1 line 9-11). If the two values are identical, the second largest 
connectivity feature of the malicious flow is obtained (in Alg.1 line 13). If the two values are 
different, the weight of the malicious flow is increased and the normal flow weight is 
adjusted by decreasing it. If the maximum value of the connectivity index with malicious 
flow is smaller than the minimum value of the connectivity index with normal flow, the 
maximum value of the connectivity index with malicious flow is set to be the threshold (in 
Alg.1 line 17, 18). If this process is repeated until the weight of malicious flow reaches 1, it 
is defined to not have been adjusted and the minimum value of normal flow connectivity 
index is set to be the threshold (in Alg.1 line 19, 20). 

After threshold balancing is completed, a threshold and weight combination for one 
particular malicious traffic emerges from the guideline. However, there several malicious 
flows exist within one particular malicious traffic, and the detection rate and accuracy vary 
over the malicious flows 
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In addition, threshold balancing is difficult to apply in this case because the threshold of 

each flow in the malicious traffic is different. Therefore, to address this problem, we define 
an optimal threshold that reflects the detection accuracy of each flow in a single traffic and 
this process called threshold optimization. Since the precision can only be calculated when 
there is a distinction between malicious and normal flows, we proceed with threshold 
optimization from Training in Section 3.1. The entire process of threshold optimization has 
been presented in Algorithm 2. 

 
𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 × 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀

𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀+𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁
       (3) 

 
𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  / 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹                                                      

 
𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜       (4) 

 

𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
∑ 𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺
𝑖𝑖=1

∑ 𝐺𝐺𝐺𝐺𝑗𝑗_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺
𝑗𝑗=1

            (5) 

 
To execute threshold optimization, we obtain two values referred to as Threshold Rating 

and Threshold Rated. As presented in Eq. (3), Threshold Rating is the product of the 
precision and the number of flows detected when the flow is used as a seed flow. As given in 
Eq. (4), Threshold Rated is the product of the previously calculated Threshold Rating and the 
threshold. An optimal threshold is the average Threshold Rated value of the guideline. As 
given by Eq. (5), it is the sum of the Threshold Rated values divided by the sum of 
Threshold Rating Values. 

Algorithm 1. Pseudo Algorithm for Threshold Balancing 
Notation - M : Malicious GT Flows / N : Normal GT Flows / F : Feature  
SI : Similarity Index / CI : Connectivity Index / F : Feature Value 
Input : Flows,  Initial THsim, Initial THcon / Output : balanced  THsim and THcon  

1 Initial_THsim = 1.0  // Similarity Threshold Balancing 
2 for i=1 to Numbers of Flow 
3        If  Initial_THsim  >  FlowiSI and  N.SImax < FlowiSI 
4       If Flowi is not Grouped 
5             Initial_THsim =  Flowi_SI 
6                   THsim = Initial_THsim 
7 if  M.CImin < N.CImax   // Best case 
8      THcon = N.CImax 
9 else if  M.CImin > N.CImax  // Usual case 

10 FM = find the MAX Feature in M.CImin 
11 FN = find the MAX Feature in N.CImax 
12       if  FM == FN // Select the Feature 
13 FN = find the Second largest Feature in N.CImax 
14 while  true//  Connectivity Threshold Balancing 
15             Increase the FM.weight and Decrease the FN.weight 
16       Figure out the balanced M.CImin and N.CImax 
17             if  M.CImin < N.CImax 
18      THcon = N.CImax 
19       if  FM.weight == 1.0 // balancing fail 
20              THcon = A.CImin 
21 return THsim and THcon 



3782                                                              Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Following threshold optimization, each malicious traffic gives rise to a separate guideline. 
However, it is difficult to detect all malicious traffic with only one optimal guideline because 
a different optical guideline is derived for each trace. Therefore, it is necessary to converge 
the optimal guidelines generated for each trace into one converged guideline. The process of 
combining the guidelines has been presented in Fig. 5 and Algorithm 2.  

The convergence process averages the thresholds corresponding to each guideline and 
stores them in one converged guideline (in Alg. 2 line 19, 20). As the trace increases, we can 
derive a more sophisticated converged guideline. This process yields a converged guideline 
that reflects the optimal guidelines of multiple traces, which can increase coverage for a 
single malicious type. 

 

  
Fig. 5. A Process of Converging the Optimal Guidelines  

Algorithm 2. Pseudo Algorithm for Threshold Optimization 
Notation - M : Malicious GT Flows / N : Normal GT Flows / TH : Threshold 
SI : Similarity Index / CI : Connectivity Index / GL : Guideline / T : Traffic Trace 
Input : Flows, GLs / Output : Optimal GLs and Converged GL  

1 For x = 1 to The Number of Traffic Traces 
2         For y = 1 to The Number of Guidelines  // Get Grouped Flow Count  
3                For i = 1 to The Number of Flows 
4 if  flowiGroupType == Similarity  
5                       TxGLySI.count++ 
6                       else if  flowiGroupType == Similarity 
7 TxGLyCI.count++ 
8                 TxGLySI.precision = precision(TxGLySI.count) 
9                 TxGLyCI.precision = precision(TxGLyCI.count) 

10 // Get Rating SI and CI (Eq. 3) 
11                 TxGLyRating = getRating(TxGLySI,  TxGLyCI)  
12 // Get Rated Threshold (Eq. 4) 
13 TxGLyRatedTHsim = getRatedTH(TxGLyTHsim,  TxGLyRating) 
14 TxGLyRatedTHcon = getRatedTH(TxGLyTHcon,  TxGLyRating) 
15 // Get Optimal Guideline (Eq. 5) 
16 TxOptimalTHsim = getRatedTH(TxGLyRatedTHsim) 
17 TxOptimalTHcon = getRatedTH(TxGLyRatedTHsim) 
18 // Get Optimal Guideline (Eq. 5) 
19 ConvergedTHsim = getConvergedTH( TxOptimalTHsim) 
20 ConvergedTHcon = getConvergedTH ( TxOptimalTHcon) 
21 return  ConvergedTHsim  and ConvergedTHsim 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021                    3783 

 

3.5 Multiple Seeds and Guidelines for Better Detection 
However, as mentioned in Section 2, several kinds of malicious traffic exist in the network, 

and each type of malicious traffic exhibits distinct attack patterns and characteristics. Even if 
a unified guideline is created via guideline optimization and convergence, the performance is 
liable to suffer if the characteristics of different types of malicious traffic types vary widely. 
To address this issue, we apply multiple seeds and guidelines to improve detection 
performance. An example of applying multiple guidelines has been depicted in Fig. 6, and an 
example of applying multiple seeds has been depicted in Fig. 7. 

Multiple guidelines are applied when characteristics and attack patterns are different for 
different types of malicious traffic by generating converged guidelines for malicious traffic 
types in advance and applying them to network traffic. As a result of applying multiple 
guidelines, it is possible to identify which malicious flows are included in network traffic. 
Therefore, multiple guidelines are used to improve performance against various types of 
malicious traffic. 

 
Fig. 6. An Example of Applying the Multiple Guidelines  

 
Multiple seeds are applicable to one target network traffic. In Fig. 7, when each of the four 

seeds is applied to the target network traffic, the coverage is observed to be 40%. However, 
if all four seeds are used, the coverage increases to 88%. Hence, by using multiple seeds, the 
overall detection rate can be improved. But the prerequisite for this is that all seeds must be 
malicious flows.  

 
Fig. 7. An Example of Applying the Multiple Seeds 
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If there is a seed for a normal flow within multiple seeds, the normal flow associated to 
other normal flows will be falsely detected as a malicious one. In that case, the precision will 
be drastically reduced. Therefore, multiple seeds should be used additionally when detection 
performance (recall) is low with a single seed. 

 

4. Evaluation  

4.1 Experiment Environment 
In this research, we have several experiments to verify our proposed method. The 

experiments were performed on a desktop computer which has a configuration of an Intel 
Core™ i7-4770K CPU @ 3.50GHz, 32GB memory and 64bit. In order to evaluate the 
proposed method, experiments were conducted using normal and malicious traffic.  

We conducted several experiments using real malicious traffic to verify the proposed 
method. As the data for verification, there is the KDD data set, which is public data for 
verification. In the case of KDD'99 of the KDD data set, the attack type was classified by 
record, and it has been used in experiments in many papers. However, there is a problem in 
that the data size is large because there are duplicate records. Although the NSL-KDD data 
set was created to solve the shortcomings of the KDD'99 data set, there is a study result 
showing the detection rate for a specific malicious traffic is very low [31-33]. Also, the 
features that can be obtained from the NSL-KDD data set are different from the features used 
in the proposed method. Flow header information such as IP, port, and protocol can be used, 
but in the case of statistical feature such as the packet size distribution and inter arrival time, 
it is difficult to use in the KDD data set because we calculate the values from the first 5 
packets of the flow. Therefore, we used the sample malicious traffic (packet capture file - 
pcap) from the web site which offers a collection of various types of malicious traffic, 
instead of using the KDD’99 and NSL-KDD data set [30].  

 
Table 3. An Information of Experiment Traffic 

Malicious Traffic Information 
Trace 

# Attack Type Size 
Flow Packet Byte 

1 Dreambot 30 4,254 3,643,162 
2 Ransomware 14 5,688 5,070,109 
3 Ramnit 232 7,321 3,702,860 
4 Z-bot 23 1,232 1,236,869 
5 Trickbot 39 11,680 14,663,528 
6 Qakbot 817 74,404 52,380,938 
7 Dridex Malware 62 3,485 2,987,300 
8 Amadey  37 521 202,410 
9 Bokbot 47 4,387 4,244,273 

10 Socgholish 92 2,219 1,472,729 
Normal Traffic Information 

Trace 
# Description Size 

Flow Packet Byte 
1 General Network Traffic  

(Chrome / KakaoTalk / Youtube  ...) 844 53,655 49,471,332 
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Every binary file in pcap files has been recognized as malicious by IDS and Antivirus 
software [31]. We also collected normal traffic through our internal server. The collected 
normal traffic used ordinary application services such as Chrome and KakaoTalk. 

Testing was conducted on network traffic with a mixture of malicious and normal flows. 
10 types of malicious traffic were used in the experiment, and Table 3 records the flow, 
packet, and byte counts corresponding to each traffic. 

As aforementioned, we used recall, precision, and f-measure, to evaluate the FCI System. 
Recall indicates the percentage of detected malicious flows. Precision indicates the accuracy 
of detection. However, if there are only two measurements, it is difficult to evaluate the 
performance objectively. For example, if the recall is 95% but the precision is 10% for one 
method and the recall is 70% but the precision is 50% for another, it is difficult to judge 
which is better. Therefore, we use the f-measure that reflects two evaluation measurements 
to objectively evaluate the performance. Although there are several types of f-measures such 
as f1-measure and f2-measure, we used f1-measure, which assigns equal weights to the recall 
and precision.  

In order to verify objective validity, we tried to conduct a comparative experiment on the 
related research method, such as signature-based analysis and deep learning-based analysis 
method. However, it is difficult to implement the model of each methodology, because each 
methodology is composed of various methods according to the applied algorithm or method, 
it is difficult to compare the proposed method with the performance. Therefore, we conduct 
several experiments on the Similarity Index-based model (SI Model), the Connectivity 
Index-based model (CI Model), and the Similarity, Connectivity-Index-based model (SI & 
CI Model). And we also compare the average performance of the proposed system with the 
other methods used in other papers. The same data and classification method was applied to 
all three models to conduct a malicious traffic detection experiment.  

The three models are distinguished according to the flow correlation index used. That is, 
the SI model uses only the statistical characteristics of the flow, the CI model uses the header 
information of the flow, and the SI & CI model uses both characteristics. We also applied the 
multiple seed algorithm to verify the algorithm. The result of experiments are shown in 
Table 5. 

As described in Section 3.5, a large amount of various malicious traffic is required to 
verify the performance of multiple guidelines. However, since it is difficult to obtain a large 
number of malicious traffic data, we performed a simple experiment using relatively easy to 
obtain and frequently occurring malware spam and ransomware in this paper.  

A description of the traffic used in the experiment is shown in Table 4. The guidelines 
were created according to the attack type described in Table 4, and the normal traffic is the 
same as the traffic used in Table 3. The result of experiments for applying the multiple 
guideline are shown in Table 6. 

 
Table 4. An Information of Experiment Traffic 

Traffic for Guideline Generation 
Trace 

# Attack Type Size 
Flow Packet Byte 

1-1 
Malware 

62 3,485 2,987,300 
1-2 51 2,905 3,028,700 
1-3 70 4,028 4,828,601 
2-1 

Ransomware 
14 5,688 5,070,109 

2-2 20 3,792 4,701,101 
2-3 18 4,921 5,207,100 
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4.2 Experiment Result  
The results of the experiment have been recorded in Table 5. Recall, precision, and f-

measure represent the results obtained by using only one seed. F-measure (MS) denotes the 
f-measure obtained by applying multiple seeds to each trace and MS indicates the number of 
used seeds. For example, F-measure (2) denotes the f-measure obtained by using two seeds. 

 The SI, CI, SI & CI models were observed to exhibit 100% precision corresponding to all 
traces. The similarity index-based model exhibited a detection rate of 30–50%, and the 
connectivity index-based model exhibited a detection rate of 70–95%. The proposed model, 
which used the complete similarity connectivity index, exhibited a recall of 85–98%. Among 
the three models, the model using similarity and connectivity indices exhibited the best result 
with respect to recall and precision. In particular, similarity and connectivity index-based 
models performed better when compared to other existing methods such as signature-based 
and deep learning-based methods. 

 
Table 5. Experiment Result 

Detection Experiment Result 
Input Traffic 

Measurement 
Coverage (%) 

Attack Norm
al 

SI Model CI Model SI & CI Model 
Flow Pkt Byte Flow Pkt Byte Flow Pkt Byte 

Dreambot All 

Recall (%) 33.33 1.39 0.28 76.67 99.62 99.93 90.00 99.86 99.98 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 49.996 86.795 94.737 
F-measure(2) 100 100 100 

Ramnit All 

Recall (%) 40.95 29.64 4.90 57.33 97.27 98.93 99.57 99.97 100 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 58.106 72.879 99.785 
F-measure(2) 100 100 100 

Ransomware All 

Recall (%) 35.71 65.47 63.71 78.57 99.89 99.99 78.57 99.89 99.99 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 52.627 87.999 87.999 
F-measure(3) 100 100 100 

Z-bot All 

Recall (%) 26.09 5.52 3.32 82.61 99.35 99.95 82.61 99.35 99.95 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 41.383 90.477 90.477 
F-measure(2) 100 100 100 

Trickbot All 

Recall (%) 33.33 0.31 0.02 89.74 99.55 99.92 64.10 87.37 90.90 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 49.996 94.593 78.123 
F-measure(3) 100 100 100 

Qakbot All 

Recall (%) 44.31 1.39 0.20 92.04 71.59 79.53 95.35 71.70 .79.50 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 61.409 95.855 97.619 
F-measure(2) 100 100 100 

Dridex 
Malware All 

Recall (%) 11.29 0.52 0.05 43.55 95.58 99.48 43.55 95.58 99.48 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 20.289 60.676 60.676 
F-measure(5) 98.21 100 100 

Amadey All 

Recall (%) 86.49 61.42 15.16 97.30 99.62 99.92 97.98 99.62 99.92 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 92.756 98.632 98.979 
F-measure(2) 100 100 100 

Bokbot All 

Recall (%) 36.17 7.20 1.43 48.94 82.70 81.64 51.06 98.95 99.90 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 53.125 65.718 67.602 
F-measure(3) 93.14 97.66 100 

Socgholish All 

Recall (%) 50.00 56.20 62.33 89.13 99.10 99.74 89.13 99.10 99.74 
Precision (%) 100 100 100 100 100 100 100 100 100 

F- measure (Flow) 66.667 94.253 94.253 
F-measure(2) 100 100 100 
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However, in the case of Dridex, Bokbot and Trickbot, the recall and precision exhibited 
were relatively low. We analyzed these traces to analyze the cause of the low performance. 
As a result of analysis, we conclude that the traffic flow of all three traces was similar to the 
normal flow. In particular, the PSD and PIT Feature values of the Similarity Index are 
comparable to those of the normal flow. Therefore, since the range of the FCI with the 
malicious flow is similar to the FCI with the normal flow, it shows relatively low 
performance. To address this shortcoming, we suggest applying multiple seeds to these 
traces. 

When multiple seeds applied, the recall and precision of Dridex and Bokbot were 
observed to improve. Based on the experimental results, it can be confirmed that the 
proposed method can perform the required classification efficiently and simply without 
degrading performance compared to the existing methods. 

Table 6 shows experimental results for multiple guideline verification. In this experiment, 
we used SI & CI models that performed best in the previous experiment. The recall, 
precision, and f-measure present the overall detection results derived when using the 
guidelines and seeds for two types of malicious traffic. In the case of f-measure to which 
multiple seeds are applied, the number of each used seed and the result are shown. For 
example, the f-measure (2, 2) in trace #1 is the result of using 2 malware seeds and 2 
ransomware seeds. When the experiment is performed on three traces, the detection rate is 
about 78~93%, and when multiple seeds are applied, the results are more improved.  

As previously described in Section 3.5, the multiple guideline algorithm is applied to 
various malicious behaviors or complex network attacks. As we mentioned earlier, in order 
to get a good performance for applying the multiple guidelines algorithm, a large amount of 
traffic is required for each attack. Therefore, as the future work, we will collect a large 
amount of malicious traffic and improve the performance of the multiple guideline algorithm 
by conducting several experiments. 

Table 7 shows the comparison between the proposed system performance and the existing 
research. In Table 7, methodology represents the description of each method, and applying 
algorithm represents the description of the applied algorithm. The target traffic represents the 
experimental traffic applied in each method, and the f-measure represents the performance of 
each methodology. 

 
Table 6. Experiment Result for Multiple Guideline Verification 

Detection Experiment Result 

Trace 
Input Traffic 

Model Measurement Coverage (%) 
Attack Normal Flow Pkt Byte 

#1 Malware 1-1 
Ransomware 2-1  All SI & CI Model 

Recall (%) 78.72 97.15 99.10 
Precision (%) 100 100 100 

F- measure (Flow) 88.09 
F-measure (2, 2) 100 

#2 Malware 1-2 
Ransomware 2-2  All SI & CI Model 

Recall (%) 93.30 99.00 99.81 
Precision (%) 100 100 100 

F- measure (Flow) 96.53 
F-measure (1, 4) 100 

#3 Malware 1-3 
Ransomware 2-3  All SI & CI Model 

Recall (%) 88.78 98.81 99.90 
Precision (%) 100 100 100 

F- measure (Flow) 94.06 
F-measure (2, 3) 100 



3788                                                              Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection 

In the proposed method, when using multiple seeds, the average accuracy value is.99.28 %. 
The performance of deep learning based analysis method varies greatly depending on the DL 
algorithm and dataset used. In Table 7, Yin el al. [27], Loukas et al. The method of [28] 
showed an average accuracy of about 83~87%, but Yu et al. [29] shows an average accuracy 
of 98.96%.  

As we do not use public experimental data, it is difficult to verify the performance of the 
proposed method. Therefore we considered the experiments and results of other studies to 
verify the performance shown in Table 7. Various studies are being conducted in the field of 
malicious traffic classification and detection, and since each study uses different data 
according to their system input data format, there is no problem with the verification 
experiment procedure. Although we cannot compare the performance better than other 
researches, but when considering at the detection experiment results, the average detection 
accuracy of 99.28% is considered to be high performance. 

 
Table 7. The Result of Proposed Method and Other Methods  

 Proposed Method Yin et al. [27] Loukas et al. [28] Yu et al. [29] 

Methodology Flow Correlation 
Index Deep Learning Deep Learning Deep Learning 

Algorithm Multiple Seed RNN LSTM CNN, RNN 

Dataset-Used Various Malicious 
Traffic NSL-KDD Various Malicious 

Traffic Alexa, OSINT 

Average 
Accuracy (%) 99.28 % 83.28 % 86.9 %` 98.96 % 

5. Conclusion 
In this paper, we have investigated the problems that plague existing malicious traffic 

detection methods and propose a method to solve it. We discussed the necessity of 
classifying malicious traffic and the problems with the existing research methods, such as 
payload signature-based and deep learning-based methods in the Introduction and Related 
Works sections. To address these problems, we proposed a malicious traffic detection 
method based on statistical and header information of the flow. We explained the structure of 
the method, the basic concepts like the flow correlation index, and the detailed algorithm in 
Section 3. 

In order to evaluate the proposed method, we conducted several experiments using 10 
types of real malicious traffic and collected normal traffic. During the evaluation, we used 
three models for comparing the performances. Experimental results demonstrated that the 
performance of the SI & CI Model yielded the best results with respect to recall and 
precision. Corresponding to most traces, the recall was over 90–98% and precision was 
100%. In particular, by applying multiple seeds, it was possible to increase the recall to 100% 
for all flows in all traces. The performance was verified to be 100% precision using the 
threshold setting algorithm and 100% recall by applying multiple seeds. We also compare 
the performance of the proposed method with other existing research methods. In proposed 
method, when we apply the multiple seed algorithm, an average of 99.28% accuracy was 
obtained, which shows higher performance than other methods. We also conducted the 
experiment to verify the multiple guideline algorithm. We conducted an experiment on two 
types of malicious traffic: malware and ransomware. Even when two or more types of 
malicious traffic are generated through an experiment, good detection performance can be 
achieved by applying multiple guidelines. Since it is difficult to obtain a large amount of 
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malicious traffic, we performed the experiment on only two types of malicious traffic. 
Therefore, in future research, we will apply the multiple guidelines to various malicious 
traffic and study how to apply it effectively. 

In addition, the proposed method can solve some of the limitations of the learning-based 
analysis method mentioned in Section 2. The learning-based analysis method has several 
problems in that it is highly dependent on the data set and it is difficult to select an 
appropriate feature. Since the proposed method generates the guidelines with an algorithm 
similar to the learning-based analysis method, the dependence on the data set still exists. 
However, the feature used in the proposed method utilizes the flow header and statistical 
information defined through various malicious and normal traffic analysis. Therefore, the 
proposed method does not need to select an appropriate feature according to the applied 
model and data. 

However, there are some limitations in the proposed system. First, it can take a long time 
to generate guidelines during the Training Section. Certain types of malicious traffic are 
capable of generating large amounts of flow depending on attack patterns and characteristics. 
In this case, the process of generating a guideline takes a considerable time because of the 
correlation index calculation between seed flows and other flows. For example, Qakbot has 
more than 500 seeds, and the process took significantly longer in its case than for other 
traces. When using the experimental data in Section 4, the guideline was generated on 
average within 15 to 30 minutes in Training Section (defined weight value = 0.01). However, 
if we adjust the weight values in detail, it will take longer than 30 minutes. Due to the 
algorithmic nature of the proposed method, the more detailed the features and weights are 
adjusted, the longer it takes to generate the guideline. However, if the proposed system is 
applied in Testing Section, it will take less time because only the detection process is 
performed using pre-generated guidelines. For the experimental data used in Section 4, the 
detection process was performed within 1 minute. Second, for some traces, a low detection 
rate appears when multiple seeds are not applied. If multiple seeds cannot be applied, 
performance may be poorer than other methodologies. We believe that this phenomenon is 
caused by less sophisticated threshold setting algorithm during the creation of guidelines. 
Therefore, it is necessary to improve the threshold setting algorithm to generate more 
sophisticated guidelines. 

Nevertheless, the proposed method addresses several existing problems and exhibits good 
performance. In particular, it uses statistical and header information of the flow, which is 
simpler than the methodology of other processes. In the proposed system, if the detailed 
malicious traffic information is received from an external firewall as a seed, the detection 
rate and precision are expected to be better than current result. 

 In this paper, experiments were conducted using only three models. However, various 
models can be created by adjusting the grouping order, method. If various models are used 
and guidelines according to the models are made in advance, even if a new type of malicious 
traffic occurs, it can be analyzed efficiently. 

As we mentioned previously, the generation of the guideline can take a considerable 
amount of time. Therefore, we will improve the threshold setting and optimization algorithm 
for the future work to decrease guideline generation time and improve the performance of 
the system. In addition, we will collect more malicious and normal traffic to generate more 
sophisticated guidelines through various experiments to improve detection performance. 
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