
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, Oct. 2021 3771
Copyright ⓒ 2021 KSII

 This research was supported by a Korea University Grant and supported by the Technology Innovation Program
grant funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Korea Evaluation Institute of
Industrial Technology (KEIT) (No. 20008902, Development of SaaS SW Management Platform based on
5Channel Discovery technology for IT Cost Saving)

http://doi.org/10.3837/tiis.2021.10.016 ISSN : 1976-7277

Flow based Sequential Grouping System
for Malicious Traffic Detection

Jee-Tae Park1, Ui-Jun Baek1, Min-Seong Lee1, Young-Hoon Goo2, Sung-Ho Lee3

and Myung-Sup Kim1*
1Dept. Of Computer and Information Science

Korea University, Korea
 [E-mail: {pjj5846, pb1069, min0764, tmskim}@korea.ac.kr]

2Advanced KREONET Center, Korea Institute of Science and Technology Information
Daejeon, Korea

[E-mail: gyh0808@kisti.re.kr]
3AhnLab, Korea

 [E-mail: sungho.lee@ahnlab.com]
*Corresponding author: Myung-Sup Kim

Received December 7, 2020; revised June 13, 2021; revised July 18, 2021; accepted September 16, 2021;

published October 31, 2021

Abstract

With the rapid development of science and technology, several high-performance
networks have emerged with various new applications. Consequently, financially or socially
motivated attacks on specific networks have also steadily become more complicated and
sophisticated. To reduce the damage caused by such attacks, administration of network
traffic flow in real-time and precise analysis of past attack traffic have become imperative.
Although various traffic analysis methods have been studied recently, they continue to suffer
from performance limitations and are generally too complicated to apply in existing systems.
To address this problem, we propose a method to calculate the correlation between the
malicious and normal flows and classify attack traffics based on the corresponding
correlation values. In order to evaluate the performance of the proposed method, we
conducted several experiments using examples of real malicious traffic and normal traffic.
The evaluation was performed with respect to three metrics: recall, precision, and f-measure.
The experimental results verified high performance of the proposed method with respect to
first two metrics.

Keywords: Traffic Classification, Flow Correlation Index, Malicious Traffic Detection,
Flow Information

`

mailto:tmskim%7d@korea.ac.kr

3772 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

1. Introduction

With the rapid development of science and technology over the recent years, the variety of
commonly-occurring internet traffic and types of application have also increased,
consequently expanding network environments. Recently, this phenomenon has been further
accelerated by developments such as 5G mobile telecommunication and edge computing.

However, the frequency of malicious traffic has also increased simultaneously, and attack
patterns have been diversified. This diversification has expanded the range of possible
damages, including personal and confidential information leaks and incapacitation of certain
corporate services, alongside the risk of financial damages. For instance, the quantity of
emails containing malicious code disguised as important communication sent from public
institutions to individuals have risen significantly. If the victim clicks the link included in
such an email, the embedded malicious code is automatically executed on the victim's
computer and personal information is stolen. Additionally, instances of services of important
financial or administrative institutions of the country being halted by attacks through
malicious traffic have also become more frequent [7-9].

To reduce the damage caused by and to prevent such malicious attacks, network
administrators are required to establish effective network management and security policies,
and accurate detection and analysis of malicious behavior based on these policies has
become imperative. Traffic classification is a field that has been studied for a long time and
is the most basic field of research on malicious traffic detection and analysis [1-5]. There are
various methods of traffic classification, such as payload signature-based methods, which
use patterns of traffic flows, and deep learning-based classification methods, which operate
by learning the traffic features.

The payload signature-based methods exhibit the best performance in terms of accuracy
and completeness. Various studies have been conducted on payload signature-based methods
in traffic classification. However, these suffer from the problems of high computational
duration and cost during the processing of a significant amount of traffic in real-time [10-14].
In particular, addressing this problem is critical to the maintenance of a high-speed network
and managing a high volume of traffic data in accordance with the recent computational
demands.

To address the aforementioned problems in payload signature-based traffic classification
methods, a deep learning-based traffic classification method has been studied. Besides
learning the payload of traffic flow corresponding to a specific application, such a method is
also capable of learning the characteristics of flow, such as flow size or the number of
associated packets. Based on the particular features of incoming traffic, deep learning
classifies it as malicious flow or normal flow.

The deep learning-based traffic classification method is capable of addressing the
problems faced by payload signature-based traffic classification methods, such as encrypted
traffic classification or high computational cost and duration, and exhibits high performance
in terms of accuracy. However, it remains highly dependent on the training data. If wrong
data is included in the training set or the amount of training data is inadequate, it becomes
difficult to extract satisfactory performance from the method [17-19]. In the field of network
security, it is difficult to obtain raw data corresponding to malicious traffic and the selection
of proper learning features to enable correct classification of malicious traffic is a
challenging problem. Even with well-performing deep learning models and adequate raw
data, the selection of inappropriate learning features could yield poor results [20-23].

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3773

Therefore, a significant amount of research has been conducted to ascertain a method of
selecting proper learning features. In addition to the two aforementioned methods, new ones
such as deep packet inspection (DPI)-based methods are also being developed [6, 24].

In this paper, we propose a method to detect malicious traffic by comparing the statistical
characteristics of network flows. We calculate various features and information of a network
flow and define the flow correlation index (FCI). By comparing the flow correlation indices
of malicious traffic and normal traffic, we define a threshold for each flow and classify
malicious flow based on these thresholds.

The proposed method is similar to the deep learning-based traffic classification method as
its operation is based on the study of past malicious traffic. However, the proposed method
calculates the flow correlation index according to clearly defined features, disposing the
necessity of selecting appropriate learning features. Moreover, as the flow correlation index
is calculated based on the characteristics of the flow, it makes it possible to clearly classify
malicious flows which comprise a mixture of malicious traffic and normal traffic.

The rest of this paper is organized as follows. In Section 2, we will discuss the related
work and, describe the detailed algorithm in Section 3. The experiments that have been
conducted to evaluate the proposed method using actual malicious traffic are presented in
Section 4. Finally, we conclude the paper and outline future research directions in Section 5.

2. Related Works
As mentioned in Section 1, traffic classification has been a well-studied topic over a

significant duration because of its importance with respect to efficient network management
and network security. Especially in the field of network security, several solutions exist that
protect a system from intrusion, such as firewalls, anti-virus software, and authentication
systems. However, the protection and prevention of intrusion depends on the successful
detection of malicious traffic. Thus, precise identification of malicious traffic and its
subsequent analysis is crucial in the defense against malicious attacks. Several methods of
traffic classification exist, including port-based, signature-based and deep learning-based
ones. The most widely studied methods are payload signature-based ones and deep learning-
based ones.

Signature-based classification methods can, in turn, be sub-classified into statistical
information-based, header information-based, and payload-based methods. The statistical
information-based approach uses statistic information such as flow size, sequence, and
vectors, but takes a long time to generate a signature and suffers from low accuracy.

The header information-based approach uses flow header information such as IP addresses
and port numbers. However, they do not use specific data to generate signatures, and are,
therefore, not suitable for general use, because the data used to generate the signature is
liable to change.

The payload signature-based approach uses an automatic signature generation system to
automatically extract the payload signatures of the target flows. A payload signature is a
unique pattern corresponding to a particular application. This implies that network traffic
generated in the same application has the same payload pattern, and such traffic can be
classified by comparing its signature to patterns corresponding to the same application.
Malicious traffic shares a common payload pattern just like normal network traffic and, thus,
can be detected based on it. Although signature based-method exhibit high detection rate,
accuracy, and coverage, they also suffer from several limitations.

3774 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

Firstly, significant computational duration and cost is required to generate a traffic's
payload signature. This is because signatures can be defined only by verifying all substrings
that are common among the payload contents. In addition, the process of finding a common
substring in the payload is complicated, which burdens the user. To solve this problem, a
significant amount of research has been conducted to automatically generate payload
signatures such as LASER (LCS-based Application Signature ExtRaction) [13, 14].

LASER automatically generates an application signature, in the form of a sequence of
substrings, by using a modified version of the LCS (longest common subsequence) algorithm
[5]. The inputs of the LCS algorithm are two distinct byte streams of packet payloads and the
extracted signature of the traffic. This method finds a common sequence of strings by using a
backtracking matrix and comparing pairs of strings. Although payload signatures can be
generated automatically using this method, it takes a long time to do so, like in the case of
existing problems [10-12].

Deep learning-based classification methods classify the traffic by learning its
characteristics. Recently, with the development of artificial intelligence (AI) technology,
such methods have been heavily studied, and its high performance and ease of learning have
been established. In addition, as various algorithms, such as convolutional neural network
(CNN) and recurrent neural network (RNN) in deep learning, can be applied to classify
malicious traffic. Since deep learning is being studied in many fields, classification method
based deep learning has a high possibility of development [25, 26].

However, deep learning-based classification methods suffer from the limitation of having
to ensure the quality of several factors such as learning data, deep-learning model, algorithm,
and proper feature selection in order to ensure high performance. Among these factors, the
selection of proper features is the most important, and several studies have been conducted to
ascertain a method for this purpose [22]. Although several such methods exist, most of them
are limited in usability, and are difficult to use universally because the features can be
defined differently depending on the data.

3. Proposed Method
In this section, we explain the basic concept, system structure, and detailed algorithm of

the method proposed. The structure of proposed method has been depicted in Fig. 1. The
structure of the FCI system consists of Training and Testing.

3.1 Structure of the FCI System
Training is the process of determining the criteria based on which malicious flows are

detected by calculating the characteristics of pre-classified malicious and normal traffic. This
criteria value for classification is defined as a threshold and the set of thresholds is defined as
a guideline.

First, pre-classified malicious and normal traffic are separately fed into the system as
inputs. The format of the traffic is taken to be pcap, which is preprocessed into a file in the
fwp format. After preprocessing, Seed is generated by the seed generation module with
inputs from malicious fwp files. The Seed is a text file that contains 5-tuples of malicious
traffic. This is a fundamental concept in FCI Systems. We calculate the flow correlation
index of the flow corresponding of a particular seed information and a given target network
flow. After preprocessing and generation of seeds, guidelines are generated by the guideline
generation module based on inputs from the Seed and preprocessed traffic. As mentioned

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3775

previously, the guideline includes the thresholds that act as the criteria for classification.
After the operation of the guideline generation module, the optimization process is
performed, and as a result, an optimized guideline is created.

 Fig. 1. Entire Structure of Sequential Grouping Model

Testing is the process of classifying input traffic as malicious or normal flow based on the

guideline created during Training. It distinguishes malicious flow from network traffic based
on seed information obtained via an external IDS (Intrusion Detection System) or firewall
and the guideline obtained via Training. Malicious flows are extracted and classified from
the target network traffic in the sequential grouping model module and the final output is
derived. The final output includes detection results, classified information (grouping
information), and the detection log. The detection results consist of recall, precision, and f-
measure. The detailed algorithms and module descriptions are described as follows.

3.2 Flow Correlation Index (FCI)
The most basic concept pertaining to the proposed method is the flow correlation index.

Any network traffic consists of a certain number of packets, which carry certain information
such as source IP, destination IP, etc. A network flow is defined as the collection of packets
that share the identical 5-tuples of information (i.e. source IP, source port, destination IP,
destination port, protocol). A session is defined as a bidirectional flow in network traffic [2].

As the characteristics of flows occurring in the same session tend to be similar, we
numerically calculate the characteristics of the two flows in a session and define their
similarity to be the flow correlation index. Flow correlation index is, thus, composed of two
indices: the similarity index and the connectivity index. The similarity index is a value that
encodes the similarity between the statistical characteristics of the two flows, and the
connectivity index is a value that encodes the similarity between the header information of
the two flows.

The features of the similarity index have been described in Table 1. We use packet inter
arrival time (PIT) and packet size distribution (PSD) of the two flows to calculate the

3776 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

corresponding similarity index. PIT5 and PSD5 denote the features of the first 5 packets
except the TCP 3-way handshake.

Table 1. Explanation of the Similarity Features

Feature Explanation Function Range

PIT_Mean
PIT5_Mean

PIT = Packet Inter Arrival Time of the Flow 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓𝑥𝑥) = ∑ 𝑇𝑇𝑖𝑖
𝑚𝑚
𝑖𝑖=1
𝑚𝑚

(m : The number of Packet in Flow 𝑓𝑓𝑥𝑥

𝑇𝑇𝑖𝑖 : Inter Arrival Time)

0~1

PIT 5 = PIT of first 5 packets

PSD_Mean
PSD5_Mean

PSS5

PSD = Packet Size Distribution of the Flow
𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓𝑥𝑥) = ∑ 𝑃𝑃𝑖𝑖

𝑚𝑚
𝑖𝑖=1
𝑚𝑚

(m : The number of Packet in Flow 𝑓𝑓𝑥𝑥

𝑃𝑃𝑖𝑖 :Payload Length)
PSD 5 = PSD of First 5-packets

PSS 5 = Packet Size Sequence of First 5 Packets

To keep the calculations objective, we used Min-Max Normalization to change the feature

value over a wide distribution to a value between 0 and 1. The feature values corresponding
to the two flows were calculated as a similarity index using the Euclidean Distance.
Euclidean Distance is the formula for the distance between two points in n-dimensional
space. Euclidean Distance can be used to express the similarity of flow characteristics by
expressing each feature value between the two flows as multidimensional coordinates. The
higher the similarity between the two flows, the smaller is the difference between the values
of each feature. Therefore, the similarity index is defined as the difference calculated using
the Euclidean distance as shown in Eq. (1).

SI�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦� = 1 −�∑ �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖(𝑓𝑓𝑥𝑥) − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖�𝑓𝑓𝑦𝑦��
2

5
𝑖𝑖=1 (1)

We use the 5-tuples of information corresponding to the flow as a feature to obtain the

connectivity index. The features of the similarity index have been described in Table 2. In
this table, ST denotes the start time of the flow, and calculates the similarity between the
start times of the two flows. SIP and DIP calculate the connectivity of the source and
destination IP addresses of the flow, respectively. The connectivity of IP Address is
calculated by reflecting the same number of bits in the 32-bit address. Similarly, SPT and
DPT denote the connectivity of the source and destination ports of the flow, respectively.
The connectivity of the ports is calculated by reflecting the same number of bits among 16
bits. PROT takes the value 1 if the protocols of the two flows are the same and 0 if they are
different. The connectivity index is calculated by combining the features with appropriate
weights.

Table 2. Explanation of the Connectivity Features

Feature Explanation Function Range

ST Start Time 𝛼𝛼𝑠𝑠𝑠𝑠�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦� = 1 −
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦)

𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
0~1

SIP Source IP Address
𝛼𝛼𝐼𝐼𝐼𝐼�𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦� = �

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑓𝑓𝑥𝑥 ,𝑓𝑓𝑦𝑦�
32

�
2

 0~1 DIP Destination IP Address
SPT Source Port Number

𝛼𝛼𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦� = �
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦�

16
�
2

 0~1 DPT Destination Port Number

PROT L4 Protocol 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥 , 𝑓𝑓𝑦𝑦� = �
mean: fx. PROT ≠ fy. PROT

1: fx. PROT = fy. PROT � Mean
or 1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3777

The weights are greater than 0, less than 1, and the sum of all the weights must be 1,

because the weights represent the reflection ratio of each feature in the connectivity index.
Smaller weight units correspond to higher levels of sophistication of the resultant threshold.
However, setting the weight unit to be too small increases the duration of the process, and so
proper definition of the weight unit is necessary. We defined the weight variance unit to be
0.01. Therefore, the connectivity index is defined as the sum of multiplied values between
feature values and weights as shown in Eq. (2).

The similarity and connectivity indices are calculated as numbers lying between 0 and 1.
If the values are close to 1, the two flows are deemed to be similar, and if the values are
close to 0, they are deemed to be dissimilar. For example, if the flow correlation index
between a malicious flow and a normal flow is calculated, the value is close to 0. In contrast,
the flow correlation index between a malicious flow and another malicious flow is observed
to be close to 1.

CI�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦� = �𝑤𝑤𝑆𝑆𝑆𝑆 × 𝑓𝑓𝑆𝑆𝑆𝑆�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� + �𝑤𝑤𝐼𝐼𝐼𝐼 × 𝑓𝑓𝐼𝐼𝐼𝐼�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� + �𝑤𝑤𝑃𝑃𝑃𝑃 × 𝑓𝑓𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� +

�𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�� (where,∑ 𝑤𝑤𝑖𝑖4
𝑖𝑖=1 = 1) (2)

3.3 Sequential Grouping Model
As mentioned previously, any network traffic consists of a large number of sessions and

flows. Similarly, malicious traffic also consists of a large number of malicious flows. Our
main goal is to classify normal and malicious flows precisely, and the basic aim of the
proposed method is to identify malicious flows that are similar to known malicious flows by
comparison. The target network traffic is generally commonly used network traffic that
consists of normal and malicious flows, and a malicious flow used for the purpose of
comparison is defined as the seed flow

Fig. 2. An Example of Sequential Grouping Model

3778 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

Grouping is the process of classifying similar flows based on the respective flow
correlation indices and pre-defined thresholds between pairs of flows. The grouping process
proceeds sequentially beginning with the seed flow, and the group classified during the first
grouping operation is defined to be the seed group. Flows in the seed group consist of flows
that are almost similar to seed flows. The flow correlation indices between one seed flow and
target flows are repeatedly calculated, and flows with similar flow correlation indices are
grouped together based on the defined threshold. In summary, in order to detect malicious
flows in a target network traffic, the flow correlation index between the target network traffic
and the seed flow is calculated, and the target flow is classified based on the value of the
index and a predefined threshold. The overall process of the sequential grouping model has
been depicted in Fig. 2.

The threshold is a criterion for grouping, and so the detection performance is significantly
dependent on the threshold setting. This necessitates the use of a sophisticated threshold
setting algorithm. If the flow correlation index between two flows is calculated to be greater
than the threshold, the two flows are considered to be similar, and the grouping process is
performed. If the threshold is set to too high a value, there are several malicious flows that
correlation index with seed flow is lower than a threshold. In that case, there will be a large
number of undetected malicious flows. In contrast, if the threshold is set too low, there are
several normal flows that correlation index with seed flow is larger than a threshold. In that
case, there will be a large number of false positive malicious flows. The process of the
sequential grouping model based on the flow correlation index and threshold have been
depicted in Fig. 2. The grouping process proceeds sequentially and is repeated until there are
no more similar flows. The threshold setting algorithm will be explained in greater detail in
Section 3.4.

3.4 Threshold Setting Algorithm
As depicted in Fig. 2, the first grouping of the filter into the seed group proceeds by

calculating the similarity index, and the second grouping is performed by calculating the
connectivity index. Grouping based on similarity and connectivity continues repeatedly. The
flow correlation index of each pair of flows is compared with the thresholds for each
sequence of grouping, and grouping proceeds in a similar manner for each sequence.

The threshold varies depending on the particular grouping sequence, necessitating its
specification for each sequence. Therefore, when the flow correlation index is calculated for
each grouping sequence, the weight value and threshold are defined as guidelines. Thus, for
each sequence, grouping is performed based on the weight and threshold defined in the
guideline. As depicted in Fig. 3, three separate cases arise while setting the threshold based
on the flow correlation index.

In the first case, the value of the connectivity index varies depending on the weight
combinations. As in the first case, proper thresholds can minimize the number of false
positives and false negatives. Via proper threshold setting, all malicious flows can be
accurately detected. However, if the threshold set too high, several malicious flows will
remain undetected. In this case, although the detection accuracy is 100%, the detection rate is
low. In contrast, if the threshold set too low, although all malicious flows will be detected,
normal flows can also be falsely detected as malicious. In this case, the detection rate is
100%; however, the detection accuracy is low.

As with the first case, appropriate threshold setting criteria are required. We define the
largest flow correlation index value between the seed flow and the normal flow as the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3779

threshold to maximize detection rate and accuracy. The threshold setting algorithm stores the
threshold and weight combination in the guideline. The same process is repeated until the
grouping no longer occurs.
.

Fig. 3. An Example of Threshold Setting Algorithm

However, as the behavior of malicious traffic is more complicated and sophisticated, there

exist several types of malicious traffic which are highly similar to normal traffic. In this case,
the flow correlation index between the seed flow and a malicious flow can be lower than the
maximum value of flow correlation index between the seed flow and the normal flows. If the
flow correlation index between the seed flow and a malicious flow is lower than flow
correlation index between the seed flow and a normal flow, undetected malicious flows will
occur as depicted in the second case presented in Fig. 3.

To address this problem, we apply the threshold balancing algorithm to adjust the
connectivity index of normal flows. An example of applying threshold balancing has been
depicted in Fig. 4. Threshold balancing is the process of readjustment of weights when the
maximum flow correlation index with normal flows is less than the minimum flow
correlation index with malicious flows.

As mentioned in Section 3.2, individual connectivity features are calculated and multiplied
with their respective weights to obtain the connectivity index and define the threshold. In
order to obtain a reasonable threshold, we can adjust the weights corresponding to specific
connectivity features. For example, the start times and ports of malicious flows can be
similar to those of normal flow. In this case, the corresponding feature values are higher than
those for several normal flows, leading to the detection of the associated malicious flow as a
normal flow. To address this shortcoming, the weights are adjusted by assigning lower

3780 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

weights to the start time and port features and higher weights to other features. The detailed
threshold balancing algorithm has been described in Algorithm 1.

Fig. 4. An Example of Applying the Threshold Balancing Algorithm

The first step of Algorithm 1 is similarity threshold balancing. The initial similarity

threshold is set to 1, and the similarity index is compared with the number of flows in the
traffic. If the initial similarity threshold is greater than the similarity index of the flow, and
the maximum similarity index with normal flows is smaller than the similarity index of the
flow, it is confirmed if the flow has been grouped (in Alg. 1 line 1-4). If the flow has not
been grouped, the initial similarity threshold is set to the similarity index of the flow, and
similarity threshold is set to initial similarity threshold (in Alg. 1 line 6).

Subsequently, the maximum value of the connectivity index with malicious flows and the
minimum value of the connectivity index with normal flows are compared (in Alg.1 line 7,
8). If the minimum connectivity index with normal flows is larger, the largest connectivity
features with that flow are compared with the smallest connectivity features with the
malicious flow (in Alg.1 line 9-11). If the two values are identical, the second largest
connectivity feature of the malicious flow is obtained (in Alg.1 line 13). If the two values are
different, the weight of the malicious flow is increased and the normal flow weight is
adjusted by decreasing it. If the maximum value of the connectivity index with malicious
flow is smaller than the minimum value of the connectivity index with normal flow, the
maximum value of the connectivity index with malicious flow is set to be the threshold (in
Alg.1 line 17, 18). If this process is repeated until the weight of malicious flow reaches 1, it
is defined to not have been adjusted and the minimum value of normal flow connectivity
index is set to be the threshold (in Alg.1 line 19, 20).

After threshold balancing is completed, a threshold and weight combination for one
particular malicious traffic emerges from the guideline. However, there several malicious
flows exist within one particular malicious traffic, and the detection rate and accuracy vary
over the malicious flows

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3781

In addition, threshold balancing is difficult to apply in this case because the threshold of

each flow in the malicious traffic is different. Therefore, to address this problem, we define
an optimal threshold that reflects the detection accuracy of each flow in a single traffic and
this process called threshold optimization. Since the precision can only be calculated when
there is a distinction between malicious and normal flows, we proceed with threshold
optimization from Training in Section 3.1. The entire process of threshold optimization has
been presented in Algorithm 2.

𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 × 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀

𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀+𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁
 (3)

𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 / 𝐺𝐺:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 (4)

𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
∑ 𝐺𝐺𝐺𝐺𝑖𝑖_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺
𝑖𝑖=1

∑ 𝐺𝐺𝐺𝐺𝑗𝑗_𝑇𝑇𝑇𝑇_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺
𝑗𝑗=1

 (5)

To execute threshold optimization, we obtain two values referred to as Threshold Rating

and Threshold Rated. As presented in Eq. (3), Threshold Rating is the product of the
precision and the number of flows detected when the flow is used as a seed flow. As given in
Eq. (4), Threshold Rated is the product of the previously calculated Threshold Rating and the
threshold. An optimal threshold is the average Threshold Rated value of the guideline. As
given by Eq. (5), it is the sum of the Threshold Rated values divided by the sum of
Threshold Rating Values.

Algorithm 1. Pseudo Algorithm for Threshold Balancing
Notation - M : Malicious GT Flows / N : Normal GT Flows / F : Feature
SI : Similarity Index / CI : Connectivity Index / F : Feature Value
Input : Flows, Initial THsim, Initial THcon / Output : balanced THsim and THcon

1 Initial_THsim = 1.0 // Similarity Threshold Balancing
2 for i=1 to Numbers of Flow
3 If Initial_THsim > FlowiSI and N.SImax < FlowiSI
4 If Flowi is not Grouped
5 Initial_THsim = Flowi_SI
6 THsim = Initial_THsim
7 if M.CImin < N.CImax // Best case
8 THcon = N.CImax
9 else if M.CImin > N.CImax // Usual case

10 FM = find the MAX Feature in M.CImin
11 FN = find the MAX Feature in N.CImax
12 if FM == FN // Select the Feature
13 FN = find the Second largest Feature in N.CImax
14 while true// Connectivity Threshold Balancing
15 Increase the FM.weight and Decrease the FN.weight
16 Figure out the balanced M.CImin and N.CImax
17 if M.CImin < N.CImax
18 THcon = N.CImax
19 if FM.weight == 1.0 // balancing fail
20 THcon = A.CImin
21 return THsim and THcon

3782 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

Following threshold optimization, each malicious traffic gives rise to a separate guideline.
However, it is difficult to detect all malicious traffic with only one optimal guideline because
a different optical guideline is derived for each trace. Therefore, it is necessary to converge
the optimal guidelines generated for each trace into one converged guideline. The process of
combining the guidelines has been presented in Fig. 5 and Algorithm 2.

The convergence process averages the thresholds corresponding to each guideline and
stores them in one converged guideline (in Alg. 2 line 19, 20). As the trace increases, we can
derive a more sophisticated converged guideline. This process yields a converged guideline
that reflects the optimal guidelines of multiple traces, which can increase coverage for a
single malicious type.

Fig. 5. A Process of Converging the Optimal Guidelines

Algorithm 2. Pseudo Algorithm for Threshold Optimization
Notation - M : Malicious GT Flows / N : Normal GT Flows / TH : Threshold
SI : Similarity Index / CI : Connectivity Index / GL : Guideline / T : Traffic Trace
Input : Flows, GLs / Output : Optimal GLs and Converged GL

1 For x = 1 to The Number of Traffic Traces
2 For y = 1 to The Number of Guidelines // Get Grouped Flow Count
3 For i = 1 to The Number of Flows
4 if flowiGroupType == Similarity
5 TxGLySI.count++
6 else if flowiGroupType == Similarity
7 TxGLyCI.count++
8 TxGLySI.precision = precision(TxGLySI.count)
9 TxGLyCI.precision = precision(TxGLyCI.count)

10 // Get Rating SI and CI (Eq. 3)
11 TxGLyRating = getRating(TxGLySI, TxGLyCI)
12 // Get Rated Threshold (Eq. 4)
13 TxGLyRatedTHsim = getRatedTH(TxGLyTHsim, TxGLyRating)
14 TxGLyRatedTHcon = getRatedTH(TxGLyTHcon, TxGLyRating)
15 // Get Optimal Guideline (Eq. 5)
16 TxOptimalTHsim = getRatedTH(TxGLyRatedTHsim)
17 TxOptimalTHcon = getRatedTH(TxGLyRatedTHsim)
18 // Get Optimal Guideline (Eq. 5)
19 ConvergedTHsim = getConvergedTH(TxOptimalTHsim)
20 ConvergedTHcon = getConvergedTH (TxOptimalTHcon)
21 return ConvergedTHsim and ConvergedTHsim

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3783

3.5 Multiple Seeds and Guidelines for Better Detection
However, as mentioned in Section 2, several kinds of malicious traffic exist in the network,

and each type of malicious traffic exhibits distinct attack patterns and characteristics. Even if
a unified guideline is created via guideline optimization and convergence, the performance is
liable to suffer if the characteristics of different types of malicious traffic types vary widely.
To address this issue, we apply multiple seeds and guidelines to improve detection
performance. An example of applying multiple guidelines has been depicted in Fig. 6, and an
example of applying multiple seeds has been depicted in Fig. 7.

Multiple guidelines are applied when characteristics and attack patterns are different for
different types of malicious traffic by generating converged guidelines for malicious traffic
types in advance and applying them to network traffic. As a result of applying multiple
guidelines, it is possible to identify which malicious flows are included in network traffic.
Therefore, multiple guidelines are used to improve performance against various types of
malicious traffic.

Fig. 6. An Example of Applying the Multiple Guidelines

Multiple seeds are applicable to one target network traffic. In Fig. 7, when each of the four

seeds is applied to the target network traffic, the coverage is observed to be 40%. However,
if all four seeds are used, the coverage increases to 88%. Hence, by using multiple seeds, the
overall detection rate can be improved. But the prerequisite for this is that all seeds must be
malicious flows.

Fig. 7. An Example of Applying the Multiple Seeds

3784 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

If there is a seed for a normal flow within multiple seeds, the normal flow associated to
other normal flows will be falsely detected as a malicious one. In that case, the precision will
be drastically reduced. Therefore, multiple seeds should be used additionally when detection
performance (recall) is low with a single seed.

4. Evaluation

4.1 Experiment Environment
In this research, we have several experiments to verify our proposed method. The

experiments were performed on a desktop computer which has a configuration of an Intel
Core™ i7-4770K CPU @ 3.50GHz, 32GB memory and 64bit. In order to evaluate the
proposed method, experiments were conducted using normal and malicious traffic.

We conducted several experiments using real malicious traffic to verify the proposed
method. As the data for verification, there is the KDD data set, which is public data for
verification. In the case of KDD'99 of the KDD data set, the attack type was classified by
record, and it has been used in experiments in many papers. However, there is a problem in
that the data size is large because there are duplicate records. Although the NSL-KDD data
set was created to solve the shortcomings of the KDD'99 data set, there is a study result
showing the detection rate for a specific malicious traffic is very low [31-33]. Also, the
features that can be obtained from the NSL-KDD data set are different from the features used
in the proposed method. Flow header information such as IP, port, and protocol can be used,
but in the case of statistical feature such as the packet size distribution and inter arrival time,
it is difficult to use in the KDD data set because we calculate the values from the first 5
packets of the flow. Therefore, we used the sample malicious traffic (packet capture file -
pcap) from the web site which offers a collection of various types of malicious traffic,
instead of using the KDD’99 and NSL-KDD data set [30].

Table 3. An Information of Experiment Traffic

Malicious Traffic Information
Trace

Attack Type Size
Flow Packet Byte

1 Dreambot 30 4,254 3,643,162
2 Ransomware 14 5,688 5,070,109
3 Ramnit 232 7,321 3,702,860
4 Z-bot 23 1,232 1,236,869
5 Trickbot 39 11,680 14,663,528
6 Qakbot 817 74,404 52,380,938
7 Dridex Malware 62 3,485 2,987,300
8 Amadey 37 521 202,410
9 Bokbot 47 4,387 4,244,273

10 Socgholish 92 2,219 1,472,729
Normal Traffic Information

Trace
Description Size

Flow Packet Byte
1 General Network Traffic

(Chrome / KakaoTalk / Youtube ...) 844 53,655 49,471,332

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3785

Every binary file in pcap files has been recognized as malicious by IDS and Antivirus
software [31]. We also collected normal traffic through our internal server. The collected
normal traffic used ordinary application services such as Chrome and KakaoTalk.

Testing was conducted on network traffic with a mixture of malicious and normal flows.
10 types of malicious traffic were used in the experiment, and Table 3 records the flow,
packet, and byte counts corresponding to each traffic.

As aforementioned, we used recall, precision, and f-measure, to evaluate the FCI System.
Recall indicates the percentage of detected malicious flows. Precision indicates the accuracy
of detection. However, if there are only two measurements, it is difficult to evaluate the
performance objectively. For example, if the recall is 95% but the precision is 10% for one
method and the recall is 70% but the precision is 50% for another, it is difficult to judge
which is better. Therefore, we use the f-measure that reflects two evaluation measurements
to objectively evaluate the performance. Although there are several types of f-measures such
as f1-measure and f2-measure, we used f1-measure, which assigns equal weights to the recall
and precision.

In order to verify objective validity, we tried to conduct a comparative experiment on the
related research method, such as signature-based analysis and deep learning-based analysis
method. However, it is difficult to implement the model of each methodology, because each
methodology is composed of various methods according to the applied algorithm or method,
it is difficult to compare the proposed method with the performance. Therefore, we conduct
several experiments on the Similarity Index-based model (SI Model), the Connectivity
Index-based model (CI Model), and the Similarity, Connectivity-Index-based model (SI &
CI Model). And we also compare the average performance of the proposed system with the
other methods used in other papers. The same data and classification method was applied to
all three models to conduct a malicious traffic detection experiment.

The three models are distinguished according to the flow correlation index used. That is,
the SI model uses only the statistical characteristics of the flow, the CI model uses the header
information of the flow, and the SI & CI model uses both characteristics. We also applied the
multiple seed algorithm to verify the algorithm. The result of experiments are shown in
Table 5.

As described in Section 3.5, a large amount of various malicious traffic is required to
verify the performance of multiple guidelines. However, since it is difficult to obtain a large
number of malicious traffic data, we performed a simple experiment using relatively easy to
obtain and frequently occurring malware spam and ransomware in this paper.

A description of the traffic used in the experiment is shown in Table 4. The guidelines
were created according to the attack type described in Table 4, and the normal traffic is the
same as the traffic used in Table 3. The result of experiments for applying the multiple
guideline are shown in Table 6.

Table 4. An Information of Experiment Traffic

Traffic for Guideline Generation
Trace

Attack Type Size
Flow Packet Byte

1-1
Malware

62 3,485 2,987,300
1-2 51 2,905 3,028,700
1-3 70 4,028 4,828,601
2-1

Ransomware
14 5,688 5,070,109

2-2 20 3,792 4,701,101
2-3 18 4,921 5,207,100

3786 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

4.2 Experiment Result
The results of the experiment have been recorded in Table 5. Recall, precision, and f-

measure represent the results obtained by using only one seed. F-measure (MS) denotes the
f-measure obtained by applying multiple seeds to each trace and MS indicates the number of
used seeds. For example, F-measure (2) denotes the f-measure obtained by using two seeds.

 The SI, CI, SI & CI models were observed to exhibit 100% precision corresponding to all
traces. The similarity index-based model exhibited a detection rate of 30–50%, and the
connectivity index-based model exhibited a detection rate of 70–95%. The proposed model,
which used the complete similarity connectivity index, exhibited a recall of 85–98%. Among
the three models, the model using similarity and connectivity indices exhibited the best result
with respect to recall and precision. In particular, similarity and connectivity index-based
models performed better when compared to other existing methods such as signature-based
and deep learning-based methods.

Table 5. Experiment Result

Detection Experiment Result
Input Traffic

Measurement
Coverage (%)

Attack Norm
al

SI Model CI Model SI & CI Model
Flow Pkt Byte Flow Pkt Byte Flow Pkt Byte

Dreambot All

Recall (%) 33.33 1.39 0.28 76.67 99.62 99.93 90.00 99.86 99.98
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 49.996 86.795 94.737
F-measure(2) 100 100 100

Ramnit All

Recall (%) 40.95 29.64 4.90 57.33 97.27 98.93 99.57 99.97 100
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 58.106 72.879 99.785
F-measure(2) 100 100 100

Ransomware All

Recall (%) 35.71 65.47 63.71 78.57 99.89 99.99 78.57 99.89 99.99
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 52.627 87.999 87.999
F-measure(3) 100 100 100

Z-bot All

Recall (%) 26.09 5.52 3.32 82.61 99.35 99.95 82.61 99.35 99.95
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 41.383 90.477 90.477
F-measure(2) 100 100 100

Trickbot All

Recall (%) 33.33 0.31 0.02 89.74 99.55 99.92 64.10 87.37 90.90
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 49.996 94.593 78.123
F-measure(3) 100 100 100

Qakbot All

Recall (%) 44.31 1.39 0.20 92.04 71.59 79.53 95.35 71.70 .79.50
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 61.409 95.855 97.619
F-measure(2) 100 100 100

Dridex
Malware All

Recall (%) 11.29 0.52 0.05 43.55 95.58 99.48 43.55 95.58 99.48
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 20.289 60.676 60.676
F-measure(5) 98.21 100 100

Amadey All

Recall (%) 86.49 61.42 15.16 97.30 99.62 99.92 97.98 99.62 99.92
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 92.756 98.632 98.979
F-measure(2) 100 100 100

Bokbot All

Recall (%) 36.17 7.20 1.43 48.94 82.70 81.64 51.06 98.95 99.90
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 53.125 65.718 67.602
F-measure(3) 93.14 97.66 100

Socgholish All

Recall (%) 50.00 56.20 62.33 89.13 99.10 99.74 89.13 99.10 99.74
Precision (%) 100 100 100 100 100 100 100 100 100

F- measure (Flow) 66.667 94.253 94.253
F-measure(2) 100 100 100

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3787

However, in the case of Dridex, Bokbot and Trickbot, the recall and precision exhibited
were relatively low. We analyzed these traces to analyze the cause of the low performance.
As a result of analysis, we conclude that the traffic flow of all three traces was similar to the
normal flow. In particular, the PSD and PIT Feature values of the Similarity Index are
comparable to those of the normal flow. Therefore, since the range of the FCI with the
malicious flow is similar to the FCI with the normal flow, it shows relatively low
performance. To address this shortcoming, we suggest applying multiple seeds to these
traces.

When multiple seeds applied, the recall and precision of Dridex and Bokbot were
observed to improve. Based on the experimental results, it can be confirmed that the
proposed method can perform the required classification efficiently and simply without
degrading performance compared to the existing methods.

Table 6 shows experimental results for multiple guideline verification. In this experiment,
we used SI & CI models that performed best in the previous experiment. The recall,
precision, and f-measure present the overall detection results derived when using the
guidelines and seeds for two types of malicious traffic. In the case of f-measure to which
multiple seeds are applied, the number of each used seed and the result are shown. For
example, the f-measure (2, 2) in trace #1 is the result of using 2 malware seeds and 2
ransomware seeds. When the experiment is performed on three traces, the detection rate is
about 78~93%, and when multiple seeds are applied, the results are more improved.

As previously described in Section 3.5, the multiple guideline algorithm is applied to
various malicious behaviors or complex network attacks. As we mentioned earlier, in order
to get a good performance for applying the multiple guidelines algorithm, a large amount of
traffic is required for each attack. Therefore, as the future work, we will collect a large
amount of malicious traffic and improve the performance of the multiple guideline algorithm
by conducting several experiments.

Table 7 shows the comparison between the proposed system performance and the existing
research. In Table 7, methodology represents the description of each method, and applying
algorithm represents the description of the applied algorithm. The target traffic represents the
experimental traffic applied in each method, and the f-measure represents the performance of
each methodology.

Table 6. Experiment Result for Multiple Guideline Verification

Detection Experiment Result

Trace
Input Traffic

Model Measurement Coverage (%)
Attack Normal Flow Pkt Byte

#1 Malware 1-1
Ransomware 2-1 All SI & CI Model

Recall (%) 78.72 97.15 99.10
Precision (%) 100 100 100

F- measure (Flow) 88.09
F-measure (2, 2) 100

#2 Malware 1-2
Ransomware 2-2 All SI & CI Model

Recall (%) 93.30 99.00 99.81
Precision (%) 100 100 100

F- measure (Flow) 96.53
F-measure (1, 4) 100

#3 Malware 1-3
Ransomware 2-3 All SI & CI Model

Recall (%) 88.78 98.81 99.90
Precision (%) 100 100 100

F- measure (Flow) 94.06
F-measure (2, 3) 100

3788 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

In the proposed method, when using multiple seeds, the average accuracy value is.99.28 %.
The performance of deep learning based analysis method varies greatly depending on the DL
algorithm and dataset used. In Table 7, Yin el al. [27], Loukas et al. The method of [28]
showed an average accuracy of about 83~87%, but Yu et al. [29] shows an average accuracy
of 98.96%.

As we do not use public experimental data, it is difficult to verify the performance of the
proposed method. Therefore we considered the experiments and results of other studies to
verify the performance shown in Table 7. Various studies are being conducted in the field of
malicious traffic classification and detection, and since each study uses different data
according to their system input data format, there is no problem with the verification
experiment procedure. Although we cannot compare the performance better than other
researches, but when considering at the detection experiment results, the average detection
accuracy of 99.28% is considered to be high performance.

Table 7. The Result of Proposed Method and Other Methods

 Proposed Method Yin et al. [27] Loukas et al. [28] Yu et al. [29]

Methodology Flow Correlation
Index Deep Learning Deep Learning Deep Learning

Algorithm Multiple Seed RNN LSTM CNN, RNN

Dataset-Used Various Malicious
Traffic NSL-KDD Various Malicious

Traffic Alexa, OSINT

Average
Accuracy (%) 99.28 % 83.28 % 86.9 %` 98.96 %

5. Conclusion
In this paper, we have investigated the problems that plague existing malicious traffic

detection methods and propose a method to solve it. We discussed the necessity of
classifying malicious traffic and the problems with the existing research methods, such as
payload signature-based and deep learning-based methods in the Introduction and Related
Works sections. To address these problems, we proposed a malicious traffic detection
method based on statistical and header information of the flow. We explained the structure of
the method, the basic concepts like the flow correlation index, and the detailed algorithm in
Section 3.

In order to evaluate the proposed method, we conducted several experiments using 10
types of real malicious traffic and collected normal traffic. During the evaluation, we used
three models for comparing the performances. Experimental results demonstrated that the
performance of the SI & CI Model yielded the best results with respect to recall and
precision. Corresponding to most traces, the recall was over 90–98% and precision was
100%. In particular, by applying multiple seeds, it was possible to increase the recall to 100%
for all flows in all traces. The performance was verified to be 100% precision using the
threshold setting algorithm and 100% recall by applying multiple seeds. We also compare
the performance of the proposed method with other existing research methods. In proposed
method, when we apply the multiple seed algorithm, an average of 99.28% accuracy was
obtained, which shows higher performance than other methods. We also conducted the
experiment to verify the multiple guideline algorithm. We conducted an experiment on two
types of malicious traffic: malware and ransomware. Even when two or more types of
malicious traffic are generated through an experiment, good detection performance can be
achieved by applying multiple guidelines. Since it is difficult to obtain a large amount of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3789

malicious traffic, we performed the experiment on only two types of malicious traffic.
Therefore, in future research, we will apply the multiple guidelines to various malicious
traffic and study how to apply it effectively.

In addition, the proposed method can solve some of the limitations of the learning-based
analysis method mentioned in Section 2. The learning-based analysis method has several
problems in that it is highly dependent on the data set and it is difficult to select an
appropriate feature. Since the proposed method generates the guidelines with an algorithm
similar to the learning-based analysis method, the dependence on the data set still exists.
However, the feature used in the proposed method utilizes the flow header and statistical
information defined through various malicious and normal traffic analysis. Therefore, the
proposed method does not need to select an appropriate feature according to the applied
model and data.

However, there are some limitations in the proposed system. First, it can take a long time
to generate guidelines during the Training Section. Certain types of malicious traffic are
capable of generating large amounts of flow depending on attack patterns and characteristics.
In this case, the process of generating a guideline takes a considerable time because of the
correlation index calculation between seed flows and other flows. For example, Qakbot has
more than 500 seeds, and the process took significantly longer in its case than for other
traces. When using the experimental data in Section 4, the guideline was generated on
average within 15 to 30 minutes in Training Section (defined weight value = 0.01). However,
if we adjust the weight values in detail, it will take longer than 30 minutes. Due to the
algorithmic nature of the proposed method, the more detailed the features and weights are
adjusted, the longer it takes to generate the guideline. However, if the proposed system is
applied in Testing Section, it will take less time because only the detection process is
performed using pre-generated guidelines. For the experimental data used in Section 4, the
detection process was performed within 1 minute. Second, for some traces, a low detection
rate appears when multiple seeds are not applied. If multiple seeds cannot be applied,
performance may be poorer than other methodologies. We believe that this phenomenon is
caused by less sophisticated threshold setting algorithm during the creation of guidelines.
Therefore, it is necessary to improve the threshold setting algorithm to generate more
sophisticated guidelines.

Nevertheless, the proposed method addresses several existing problems and exhibits good
performance. In particular, it uses statistical and header information of the flow, which is
simpler than the methodology of other processes. In the proposed system, if the detailed
malicious traffic information is received from an external firewall as a seed, the detection
rate and precision are expected to be better than current result.

 In this paper, experiments were conducted using only three models. However, various
models can be created by adjusting the grouping order, method. If various models are used
and guidelines according to the models are made in advance, even if a new type of malicious
traffic occurs, it can be analyzed efficiently.

As we mentioned previously, the generation of the guideline can take a considerable
amount of time. Therefore, we will improve the threshold setting and optimization algorithm
for the future work to decrease guideline generation time and improve the performance of
the system. In addition, we will collect more malicious and normal traffic to generate more
sophisticated guidelines through various experiments to improve detection performance.

3790 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

References
[1] M. S. Kim, Y. J. Won, and J. W. K. Hong, “Application-Level Traffic Monitoring and an

Analysis on IP Networks,” ETRI Journal, Vol. 27, pp. 22-42, 2015. Article (CrossRefLink)
[2] K. S. Shim, S.H. Yoon, S.K. Lee, S.M. Kim, W.S. Jung, M.S. Kim, “Automatic Generation of

Snort Content Rule for Network Traffic Analysis,,” KICS, Vol.40, No.04, pp.666-677, April,
2015. Article (CrossRefLink)

[3] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes, et al., “A Survey on
Internet Traffic Identification,” IEEE Communications Surveys and Tutorials, Vol. 11, pp. 37-52,
2009. Article (CrossRefLink)

[4] A. Dainotti, A. Pescape and K. Claffy, “Issues and Future Directions in Traffic Classification,”
Network IEEE, Vol. 26, no. 1, pp. 35-40, 2012. Article (CrossRefLink)

[5] B. C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong, “Towards Automated Application Signature
Generation for Traffic Identification,” in Proc. of Network Operations and Management
Symposium, NOMS 2008, IEEE, pp. 160-167, 2008. Article (CrossRefLink)

[6] K. C. Lan and J. Heidemann, “A Measurement Study of Correlations of Internet Flow
Characteristics,” Computer Networks, Vol. 50, pp. 46-62, 2006. Article (CrossRefLink)

[7] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A Survey of Intrusion
Detection Techniques in Cloud,” J. Netw. Comput. Appl., vol. 36, no. 1, pp. 42–57, 2013.
Article (CrossRefLink)

[8] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, “An Overview of IP
Flow-Based Intrusion Detection,” IEEE Commun. Surveys Tutorials, Vol. 12, no. 3, pp. 343–356,
quarter 2010. Article (CrossRefLink)

[9] R. Perdisci, W. Lee, and N. Feamster, “Behavioral Clustering of HTTP-Based Malware and
Signature Generation Using Malicious Network Traces,” NSDI, Vol. 10, 2010.

[10] H. M. An, S. K. Lee, J. H. Ham, and M. S. Kim, “Traffic Identification based on Applications
using Statistical Signature free from Abnormal TCP Behavior,” JOURNAL OF INFORMATION
SCIENCE AND ENGINEERING, Vol.31, no.5, pp.1669-1692, Sep. 2015.
Article (CrossRefLink)

[11] J. S. Park, S. H. Yoon and M. S. Kim, “Performance Improvement of the Payload Signature
based Traffic Classification System using Application Traffic Temporal Locality,” The Journal
of Korean Institute of Communications and Information Sciences, vol. 38B, pp. 519-525, 2013.
Article (CrossRefLink)

[12] Y. J. Won, S. C. Hong, B. C. Park, and J. W. K. Hong, "Automated Application Signature
Generation for Traffic Identification,” POSTECH, Korea, Aug. 16, 2008.

[13] S. H. Yoon, J. S. Park, and M. S. Kim, “Behavior Signature for Fine-grained Traffic
Identification,” Applied Mathematics & Information Sciences, Vol. 9, No. 2L, pp. 523-534, Apr.
2015.

[14] X. Feng, X. Huang, X. Tian, and Y. Ma, “Automatic Traffic Signature Extraction based on
Smith-Waterman Algorithm for Traffic Classification,” in Proc. of Broadband Network and
Multimedia Technology (IC-BNMT), 2010 3rd IEEE International Conference on, pp. 154-158,
2010. Article (CrossRefLink)

[15] M. Finsterbusch, C. Richter, E. Rocha, J. A. Muller and K. Hanssgen, “A Survey of Payload-
Based Traffic Classification Approaches,” Communications Surveys & Tutorials IEEE, Vol. 16,
no. 2, pp. 1135- 1156, 2014. Article (CrossRefLink)

[16] F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus, “Lightweight, Payload-Based
Traffic Classification an Experimental Evaluation,” in Proc. of IEEE International Conference
on Communications, Beijing, China, pp. 5869-5875, May. 19-23, 2008. Article (CrossRefLink)

[17] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine Learning for Networking:
WorkFlow, Advances and Opportunities,” IEEE Network, Vol. 32, no. 2, pp. 92–99, Mar./Apr.
2018. Article (CrossRefLink)

https://doi.org/10.4218/etrij.05.0104.0040
https://doi.org/10.7840/kics.2015.40.4.666
https://doi.org/10.1109/surv.2009.090304
https://doi.org/10.1109/mnet.2012.6135854
https://doi.org/10.1109/noms.2008.4575130
https://doi.org/10.1016/j.comnet.2005.02.008
https://doi.org/10.1016/j.jnca.2012.05.003
https://doi.org/10.1109/surv.2010.032210.00054
https://doi.org/10.6688/JISE.2015.31.5.10
https://doi.org/10.7840/kics.2013.38b.7.519
https://doi.org/10.1109/icbnmt.2010.5704886
https://doi.org/10.1109/surv.2013.100613.00161
https://doi.org/10.1109/icc.2008.1097
https://doi.org/10.1109/mnet.2017.1700200

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3791

[18] T. T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet Traffic Classification
using Machine Learning,” IEEE Communications Surveys and Tutorials, Vol. 10, pp. 56-76,
2008. Article (CrossRefLink)

[19] S. Pouyanfar et al., “A Survey on Deep Learning: Algorithms, Techniques, and Applications,”
ACM Comput. Surveys, Vol. 51, no. 5, pp. 1–36, 2018. Article (CrossRefLink)

[20] Y. Dhote, S. Agrawal, “A Survey on Feature Selection Techniques for Internet Traffic
Classification,” in Proc. of 2015 International Conference on Computational Intelligence and
Communication Networks, Jabalpur, pp. 1375-1380, 2015. Article (CrossRefLink)

[21] Z. B. Celik, R. J. Walls, P. McDaniel and A. Swami, “Malware Traffic Detection using Tamper
Resistant Features,” in Proc. of Military Communications Conference, MILCOM 2015 - 2015
IEEE, Tampa, FL, pp. 330- 335, 2015. Article (CrossRefLink)

[22] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning Methods for
Cyber Security Intrusion Detection,” IEEE Communications Surveys Tutorials, Vol. 18, no. 2, pp.
1153–1176, Secondquater 2016. Article (CrossRefLink)

[23] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware Traffic Classification using
Convolutional Neural Network for Representation Learning,” in Proc. of 2017 International
Conference on Information Networking (ICOIN), IEEE, Jan, pp. 712–717, 2017.
Article (CrossRefLink)

[24] R. K. Sharma, H. K. Kalita, and P. Borah, “Analysis of Machine Learning Techniques based
Intrusion Detection Systems,” in Proc. of 3rd International Conference on Advanced. Computing,
Network Informatics, pp. 485–493, 2015. Article (CrossRefLink)

[25] M. J. De Lucia, and C. Cotton, “Detection of Encrypted Malicious Network Traffic using
Machine Learning,” in Proc. of MILCOM 2019-2019 IEEE Military Communications
Conference (MILCOM), IEEE, pp. 1-6, 2019. Article (CrossRefLink)

[26] D, Tirtharaj, “A Study on Intrusion Detection using Neural Networks Trained with Evolutionary
Algorithms,” Soft Computing, 21(10), pp. 2687-2700, 2017. Article (CrossRefLink)

[27] C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for Intrusion Detection using
Recurrent Neural Networks,” IEEE Access, 5, pp. 21954–21961, 2017. Article (CrossRefLink)

[28] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, and D. Gan, “Cloud-based cyber-
physical intrusion detection for vehicles using Deep Learning,” IEEE Access, 6, pp. 3491–3508,
2018. Article (CrossRefLink)

[29] B. Yu, D. L. Gray, J. Pan, M. D. Cock and A. C. A. Nascimento, “Inline DGA Detection with
Deep Networks,” in Proc. of 2017 IEEE International Conference on Data Mining Workshops
(ICDMW), New Orleans, LA, pp. 683-692, 2017. Article (CrossRefLink)

[30] Malware traffic analysis.net. https://www.malware-traffic-analysis.net.
[31] I. Letteri, G. D. Penna, L. D. Vita, and M. T. Grifa, “MTA-KDD'19: A Dataset for Malware

Traffic Detection,” ITASEC, 2020. Article (CrossRefLink)
[32] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99

data set,” in Proc. of 2009 IEEE symposium on computational intelligence for security and
defense applications, IEEE, 2009. Article (CrossRefLink)

[33] L. Dhanabal, and S. P. Shantharajah, “A study on NSL-KDD dataset for intrusion detection
system based on classification algorithms,” International Journal of Advanced Research in
Computer and Communication Engineering, Vol. 4, no. 6, pp. 446-452, 2015.

https://doi.org/10.1109/surv.2008.080406
https://doi.org/10.1145/3234150
https://doi.org/10.1109/cicn.2015.267
https://doi.org/10.1109/milcom.2015.7357464
https://doi.org/10.1109/comst.2015.2494502
https://doi.org/10.1109/icoin.2017.7899588
https://doi.org/10.1007/978-81-322-2529-4_51
https://doi.org/10.1109/milcom47813.2019.9020856
https://doi.org/10.1007/s00500-015-1967-z
https://doi.org/10.1109/access.2017.2762418
https://doi.org/10.1109/access.2017.2782159
https://doi.org/10.1109/icdmw.2017.96
https://www.malware-traffic-analysis.net./
https://doi.org/10.13140/RG.2.2.25125.65767
https://doi.org/10.1109/cisda.2009.5356528

3792 Park et al.: Flow based Sequential Grouping System for Malicious Traffic Detection

Jee-Tae Park was born in Busan, South Korea, in 1993. He received his B.S. degree
computer and information science from Korea University, South Korea, in 2017, where he
is currently pursuing the Ph.D. degree (integrated program). His research interests include
Internet traffic classification, network management and Internet security.

Ui-Jun Back was born in Seoul, South Korea, in 1993. He received his B.S. degree
computer and information science from Korea University, South Korea, in 2018, where he
is currently pursuing the Ph.D. degree (integrated program). His research interests include
blockchain transaction monitoring, network management and Internet security.

Min-Seong Lee was born in Iksan, South Korea, in 1994. He received his B.S. degree
computer and information science from Korea University, South Korea, in 2020, where he
is currently pursuing the Master degree. His research interests include network management
and Internet security

Young-Hoon Goo was born in Cheonan, South Korea, in 1991. He received the B.S. and
Ph.D. degrees (integrated program) in computer and information science from Korea
University, South Korea, in 2016 and 2020 respectively. Since 2020, he has been a
postdoctoral researcher with Korea Institute of Science and Technology Information
(KISTI), South Korea. His research interests include Internet traffic classification, Internet
security, network management, and wireless communication.

Song-Ho Lee was born in Seoul, South Korea, in 1991. He received the B.S. and M.S.
degrees in computer and information science from Korea University, South Korea, in 2016
and 2018 respectively. Since 2018, he has been a researcher with AhnLab, South Korea. His
research interests include Internet traffic classification, Internet security, network
management, and wireless communication.

Myung-Sup Kim was born in Gyeongju, South Korea, in 1972. He received his B.S.,
M.S., and Ph.D. degrees in computer science and engineering from POSTECH, South
Korea, in 1998, 2000, and 2004, respectively. From September 2004 to August 2006, he
was a Postdoctoral Fellow with the Department of Electrical and Computer Engineering,
University of Toronto, Canada. He joined Korea University, Korea, in 2006, where he is
working currently as a Full Professor with the Department of Computer Convergence
Software. His research interests include Internet traffic monitoring and analysis, service and

