DOI QR코드

DOI QR Code

브루나이 열대우림의 산림 유형별 지상부 바이오매스 추정

Aboveground biomass of tropical rain forests by forest type in Brunei Darussalam

  • 장민주 (고려대학교 대학원 환경생태공학과) ;
  • 노유진 (국립생태원 보전평가연구본부 기후생태연구실) ;
  • 김형섭 (고려대학교 대학원 환경생태공학과) ;
  • 이정민 (고려대학교 대학원 환경생태공학과) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Jang, Minju (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Roh, Yujin (Division of Climate & Ecology, Bureau of Conservation & Assessment Research, National Institute of Ecology) ;
  • Kim, Hyung-sub (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Lee, Jeongmin (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 투고 : 2021.07.19
  • 심사 : 2021.08.04
  • 발행 : 2021.09.30

초록

본 연구의 목적은 동남아시아 열대우림의 대표 산림 유형인 MDF, PSF 그리고 HF에서 지상부 바이오매스를 추정하는 것이다. 브루나이에서 MDF, PSF 그리고 HF를 대상으로 각각 3개 지역을 선정하여 20 m×20 m 조사구를 지역마다 9개씩 설치하고 흉고직경 10 cm 이상인 임목의 흉고직경을 측정하였다. 지상부 바이오매스는 측정된 흉고직경과 바이오매스 상대생장식을 활용하여 추정되었다. 지상부 바이오매스는 MDF, PSF 그리고 HF에서 각각 603.3±159.9, 305.9±23.4 그리고 284.3±19.3 Mg ha-1 순으로 나타났다. 산림 유형에 따라 지상부 바이오매스는 유의하게 차이가 있었으며, MDF에서 가장 높게 나타났다. 이는 흉고직경이 70 cm 이상인 거대목이 MDF에서 집중되어 출현했기 때문이다. 이러한 연구 결과는 산림 유형에 따라 거대목의 출현빈도가 다르며, 나아가 거대목의 출현이 지상부 바이오매스 추정에 영향을 주는 요인 중 하나라는 의미를 가진다.

The aboveground biomass (AGB) was estimated in mixed dipterocarp forests (MDF), peat swamp forests (PSF), and heath forests (HF) in Brunei Darussalam. A total of 81 (20 m×20 m) plots were established for MDF, PSF, and HF in three regions. The diameter at breast height(DBH) of all live trees (DBH≥10 cm) was measured within the plots. The AGB was calculated using an allometric equation with the measured DBH. The AGB(Mg ha-1) for MDF, PSF, and HF was 603.3±159.9, 305.9±23.4, and 284.3±19.3, respectively, and was significantly different among the forest types (p<0.05). The greater AGB in MDF than those in PSF and HF was due to the presence of emergent trees in MDF. The results showed that the number of emergent trees varied by forest type. Consequently, the appearance of the emergent trees could be one of the main factors affecting AGB in Southeast Asia's tropical rain forests.

키워드

과제정보

본 논문은 산림청 한국임업진흥원의 '열대림 탄소흡수량 MRV 및 관리체계 구축 방안 연구(2018110C10-2020-BB01)', 국토교통부/국토교통과학기술진흥원의 '온실가스 저감을 위한 국토도시공간 계획 및 관리기술 개발(21UMRG-B158194-02)' 과제의 지원을 받아 수행되었습니다.

참고문헌

  1. Achard F, HD Eva, HJ Stibig, P Mayaux, J Gallego, T Richards and JP Malingreau. 2002. Determination of deforestation rates of the world's humid tropical forests. Science 297:999-1002. https://doi.org/10.1126/science.1070656
  2. Andriesse JP. 1988. Nature and Management of Tropical Peat Soils. FAO Soils Bulletin 59. Food and Agriculture Organization. Rome, Italy.
  3. Appanah S. 1998. A Review of Dipterocarps: Taxonomy, Ecology and Silviculture. Center for International Forestry Research. Bogor, Indonesia.
  4. Ashton PS and P Hall. 1992 Comparisons of structure among mixed dipterocarp forests of north-western Borneo. J. Ecol. 90:459-481. https://doi.org/10.2307/2260691
  5. Basuki TM, AK Skidmore, YA Hussin and I van Duren. 2013. Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data. Int. J. Remote Sens. 34:4871-4888. https://doi.org/10.1080/01431161.2013.777486
  6. Basuki TM, PE van Laake, AK Skidmore and YA Hussin. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manage. 257:1684-1694. https://doi.org/10.1016/j.foreco.2009.01.027
  7. Bruenig EF. 1996. Conservation and Management of Tropical Rainforests. CAB International. Wallingford, UK.
  8. Chave J, R Condit, HC Muller-Landau, SC Thomas, PS Ashton and EC Losos. 2008. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 6:e45. https://doi.org/10.1371/journal.pbio.0060045
  9. Chave J, R Condit, S Lao, JP Caspersen, RB Foster and SP Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J. Ecol. 91:240-252. https://doi.org/10.1046/j.1365-2745.2003.00757.x
  10. Condit R. 1998. Tropical Forest Census Plots. Springer. Berlin, Germany.
  11. Dewalt SJ and J Chave. 2004. Structure and biomass of four lowland neotropical forests. Biotropica 36:7-19. https://doi.org/10.1111/j.1744-7429.2004.tb00291.x
  12. Evers S, CM Yule, R Padfield, P O'Reilly and H Varkkey. 2017. Keep wetlands wet: the myth of sustainable development of tropical peatlands - implications for policies and management. Glob. Change Biol. 23:534-549. https://doi.org/10.1111/gcb.13422
  13. FAO. 2020. Global Forest Resources Assessments. Food and Agriculture Organization. Rome, Italy.
  14. Ishizuka S, K Sakurai, J Sabang, JJ Kendawang and HS Lee. 2000. Soil characteristics of an abandoned shifting cultivation land in Sarawak, Malaysia. Tropics 10:251-263. https://doi.org/10.3759/tropics.10.251
  15. Jucker T, GP Asner, M Dalponte, ... , M Svatek, EC Turner and DA Coomes. 2018. Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences 15:3811-3830. https://doi.org/10.5194/bg-15-3811-2018
  16. Katayama A, T Kume, H Komatsu, TM Saitoh, M Ohashi, M Nakagawa, M Suzuki, K Otsuki and TO Kumagai. 2013. Carbon allocation in a Bornean tropical rainforest without dry seasons. J. Plant Res. 126:505-515. https://doi.org/10.1007/s10265-012-0544-0
  17. Lee S, D Lee, TK Yoon, KA Salim, S Han, HM Yun, M Yoon, E Kim, W-K Lee, SJ Davies and Y Son. 2015. Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei. J. Ecol. Environ. 38:75-84. https://doi.org/10.5141/ecoenv.2015.008
  18. Laumonier Y, A Edin, M Kanninen and AW Munandar. 2010. Landscape-scale variation in the structure and biomass of the hill dipterocarp forest of Sumatra: implications for carbon stock assessments. For. Ecol. Manage. 259:505-513. https://doi.org/10.1016/j.foreco.2009.11.007
  19. Lutz JA, TJ Furniss, DJ Johnson, ... , S Yap, JK Zimmerman and A Kerkhoff. 2018. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27:849-864. https://doi.org/10.1111/geb.12747
  20. Magdon P, E Gonzalez-Ferreiro, C Perez-Cruzado, ES Purnama, D Sarodja and C Kleinn. 2018. Evaluating the potential of ALS data to increase the efficiency of aboveground biomass estimates in tropical peat-swamp forests. Remote Sens. 10:1344. https://doi.org/10.3390/rs10091344
  21. Malhi Y, LEOC Aragao, DB Metcalfe, R Paiva, CA Quesada, S Almeida, L Anderson, P Brando, JQ Chambers, ACL Da Costa, LR Hutyra, P Oliveira, S Patino, EH Pyle, AL Robertson and LM Teixeira. 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Change Biol. 15:1255-1274. https://doi.org/10.1111/j.1365-2486.2008.01780.x
  22. Miyamoto K, E Suzuki, T Kohyama, T Seino, E Mirmanto and H Simbolon. 2003. Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of central Kalimantan, Indonesia. J. Trop. Ecol. 19:43-54. https://doi.org/10.1017/s0266467403003067
  23. Miyamoto K, JS Rahajoe, T Kohyama and E Mirmanto. 2007. Forest structure and primary productivity in a Bornean heath forest. Biotropica 39:35-42. https://doi.org/10.1111/j.1744-7429.2006.00231.x
  24. Miyamoto K, TS Kohyama, JS Rahajoe, E Mirmanto and H Simbolon. 2016. Forest structure and productivity of tropical heath and peatland forests. pp. 151-166. In: Tropical Peatland Ecosystems (Osaki M and N Tsuji, eds.). Springer. Tokyo.
  25. Pan Y, RA Birdsey, J Fang, R Houghton, PE Kauppi, WA Kurz, OL Phillips, A Shvidenko, SL Lewis, JG Canadell, P Ciais, RB Jackson, SW Pacala, AD McGuire, S Piao, A Rautiainen, S Sitch and D Hayes. 2011. A large and persistent carbon sink in the world's forests. Science 333:988-993. https://doi.org/10.1126/science.1201609
  26. Paoli GD, LM Curran and JWF Slik. 2008. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155:287-299. https://doi.org/10.1007/s00442-007-0906-9
  27. Saner P, YY Loh, RC Ong and A Hector. 2012. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo. PLoS ONE 7:e29642. https://doi.org/10.1371/journal.pone.0029642
  28. Slik JWF, GD Paoli, K McGuire, ... , R Zang, MG Zhang and N Zweifel. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22:1261-1271. https://doi.org/10.1111/geb.12092
  29. UNFCCC. 2016. Brunei Darussalam's Initial National Communication. United Nations Framework Convention on Climate Change. Bonn, Germany.
  30. Verwer CC and PJ van der Meer. 2010. Carbon Pools in Tropical Peat Forests - Towards a Reference Value for Forest Biomass in Relatively Undisturbed Peat Swamp Forests in Southeast Asia. Alterra Report 2108. Wageningen, Netherlands. pp. 1-64.
  31. Wijedasa LS, S Sloan, SE Page, GR Clements, M Lupascu and TA Evans. 2018. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes. Glob. Change Biol. 24:4598-4613. https://doi.org/10.1111/gcb.14340
  32. Zani NF, MN Suratman, A Yaacob and N Asari. 2018. Biomass and carbon stocks estimation of lowland dipterocarp, riparian and hill dipterocarp forests in Pahang national park, Malaysia. pp. 123-140. In: National Parks: Management and Conservation. IntechOpen. London, UK.