DOI QR코드

DOI QR Code

A comparative study of mosquito population density according to the Sejong City areas and old city and new city

세종특별자치시 전역과 구도심 및 신도심에 따른 모기 밀도 비교 연구

  • Na, Sumi (Major of Bio & Environmental Technology, Graduate School of Seoul Women's University) ;
  • Doh, Jiseon (Major of Bio & Environmental Technology, Graduate School of Seoul Women's University) ;
  • Yang, Young Cheol (Department of Environmental Health and Safety, Eulji University) ;
  • Ryu, Sungmin (Major of Bio & Environmental Technology, Seoul Women's University) ;
  • Yi, Hoonbok (Major of Bio & Environmental Technology, Seoul Women's University)
  • 나수미 (서울여자대학교 대학원 생명환경공학과) ;
  • 도지선 (서울여자대학교 대학원 생명환경공학과) ;
  • 양영철 (을지대학교 보건환경안전학과) ;
  • 유성민 (서울여자대학교 생명환경공학과) ;
  • 이훈복 (서울여자대학교 생명환경공학과)
  • Received : 2021.05.27
  • Accepted : 2021.09.14
  • Published : 2021.09.30

Abstract

This study was conducted to establish mosquito distribution density and habitat in Sejong city for the prevention of mosquito-borne infectious diseases. The overall distribution of mosquitoes in the Sejong City was investigated, and the population density of mosquitoes in the old and new city was analyzed. Mosquito populations were determined using MOSHOLE and Blacklight traps once a week overnight. We also compared the mosquito population density of the old city and the new city, and the daily mosquito population was calculated using the data from the smart mosquito trap(DMS). Of all the study sites, Geumnam-myeon had the highest number of mosquitoes captured, and the dominant species were Armigeres subalbatus and Culex pipienspallens. Mosquito species with the potential for transmitting diseases were mainly found in Yeonseo-myeon (106 individual), and Geumnam-myeon (101). Mosquito collection rates by MOSHOLE trap and Blacklight trap were 58.49% and 41.51%, respectively. We concluded that using CO2 would be the most suitable approach for collecting mosquitoes. The mosquito population density in the old city (92.05±7.04) was approximately twice that of the new city(51.50±4.05). Since Sejong City is divided into old city and new city, it is difficult to spot remarkable effects in a standardized way. For effective quarantine, differentiation of quarantine must be established. This study results provide a basis for Sejong City's integrated mosquito control guidelines, and therefore effective control of which we believe will help control the spread of mosquito-borne diseases and reduce damage from mosquitoes.

본 연구는 모기 매개체 감염병 예방을 위한 방역사업의 계획수립을 위하여 세종시의 모기 밀도 및 서식환경을 분석하여 방역 가이드라인 기초자료를 확립하는 것을 목적으로 수행되었다. 세종시 전반적인 모기분포 현황 조사를 위해 2019년 8월~10월까지 MOSHOLE과 유문등을 사용하여 일주일에 1회 1박2일 간의 모기 개체수를 조사하였으며, 구도심(조치원읍)과 신도심(보람동)의 밀도차 분석을 위해 2020년 4월~10월까지 DMS를 활용하여 매일의 모기 개체수를 조사하였다. 연구 결과 금남면에서 가장 많은 모기가 포집되었으며 서식하는 우점 모기 종은 큰검정들모기, 빨간집모기인 것으로 나타났다. 모기 개체수에 영향을 미치는 토지피복 유형은 산림지역과 초지지역으로 나타났다. 질병 매개 가능성이 있는 모기 종 분석 결과 연서면과 금남면에서 다수 발견되었으며, 흰줄숲모기, 얼룩날개모기류, 작은빨간집모기 순서로 확인되었다. 각각 CO2와 빛을 유인제로 사용하는 MOSHOLE과 유문등의 채집효율을 비교 분석한 결과, CO2의 유인률이 높아 모기 포집 효율성과 생태계 안정성 보존을 위해 CO2를 유인제로 사용하는 것이 적합한 것으로 나타났다. 세종시의 모기 개체수는 구도심이 신도심보다 약 2배 정도 개체수가 많은 것으로 나타났다. 세종시는 구도심과 신도심으로 나누어져 있기 때문에 획일적인 방식으로는 눈에 띄는 방역 효과를 보기가 어려우며 효과적인 방역을 위해서는 방역의 차별성을 두어야 할 것으로 사료된다. 본 연구는 세종시의 통합적인 모기 방제 가이드라인의 기초작업으로 이루어졌으며, 본 연구의 결과로 모기를 매개로 하는 질병 확산을 제어하고, 모기로부터의 피해를 줄이는 데 일조하기를 바란다.

Keywords

Acknowledgement

이 논문은 서울여자대학교 교내연구비의 지원을 받았음 (2021-0189).

References

  1. Baek HM, DG Kim, MJ Baek, CY Lee, HJ Kang, MC Kim, JS Yoo and YJ Bae. 2014. Predation efficiency and preference of the Hydrophilid water beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean J. Environ. Biol. 32:112-117. https://doi.org/10.11626/KJEB.2014.32.2.112
  2. Bahk HJ and DH Lee. 2017. Domestic and international trend of vector-borne disease. J. Korean Med. Assoc. 60:451-457. https://doi.org/10.5124/jkma.2017.60.6.451
  3. Chung MH. 2009. Dengue fever. Korean J. Med. 77:165-170.
  4. ETND. Digital mosquito occurrence information monitoring system. Environmental Technology and Development. Gwangju, Korea. http://dmsnet.kr/
  5. Gates B. Mapping the end of malaria. GateNotes. https://www.gatesnotes.com/Health/Mapping-the-End-of-Malaria
  6. Harbach RE. 2007. The Culicidae (Diptera): A review of taxonomy, classification and phylogeny. Zootaxa 1668:591-638. https://doi.org/10.11646/zootaxa.1668.1.28
  7. Jeon JH, HW Kim, HI Lee and SH Cho. 2020. Integrated vector management for malaria control in cattle shed. PHWR 13:1313-1322.
  8. Justice MJ and TC Justice. 2016. Attraction of insects to incandescent, compact fluorescent, halogen, and LED lamps in a light trap: implications for light pollution and urban ecologies. Entomol. News 125:315-326. https://doi.org/10.3157/021.125.0502
  9. Kim DG, HJ Kim, SM Na, JS Yoo, YJ Bae and HB Yi. 2020. Development of automatic counting and identification trap for mosquito monitoring. Southeast Asian J. Trop. Med. Public Health 51:280-287.
  10. Kim JE, HG Lee and DG Kim. 2020. The suggestion for mosquito control methods on mosquito habitat by land cover map classification. Korean J. Environ. Biol. 38:189-196. https://doi.org/10.11626/KJEB.2020.38.1.189
  11. Kim JE, YJ Bae, HG Lee and DG Kim. 2018. Analysis of habitat characteristics of mosquitoes in Danwon-gu, Ansan city, Korea, based on civil complaint data. Entomol. Res. 48:540-549. https://doi.org/10.1111/1748-5967.12330
  12. Korea Disease Control and Prevention Agency. 2018. Mosquito Control Guidelines for Major Infectious Diseases. Ministry of Health and Welfare. Sejong, Korea.
  13. Korea Disease Control and Prevention Agency. 2021. Infection Disease Portal. Ministry of Health and Welfare. Sejong, Korea. http://www.kdca.go.kr/npt/biz/npp/portal/nppLwcrIcdMain.do
  14. Korea Meteorological Administration. 2021. Open MET Data Portal. Korea Meteorological Administration. Seoul. https://data.kma.go.kr/cmmn/main.do
  15. Lee HS, WG Lee, HI Lee and SH Cho. 2020. Test operation of digital mosquito monitoring system for vector surveillance. PHWR 13:1303-1312.
  16. Lee KW. 1998. A revision of the illustrated taxonomic keys to genera and species of female mosquitoes of Korea (Diptera, Culicidae). 5th Medical Detachment, 168 Medical Battalion, 18th Medical Command. U.S. Army.
  17. Ministry of Environment. 2019. Environmental Geographic Information Service. Ministry of Environment. Sejong, Korea. https://egis.me.go.kr/main.do
  18. Na SM and HB Yi. 2020. Application of smart mosquito monitoring traps for the mosquito forecast systems by Seoul Metropolitan city. J. Ecol. Environ. 44:1-8. https://doi.org/10.1186/s41610-019-0145-0
  19. Norris DE. 2004. Mosquito-borne diseases as a consequence of land use change. EcoHealth 1:19-24. https://doi.org/10.1007/s10393-004-0008-7
  20. Reiter P. 2001. Climate change and mosquito-borne disease. Environ. Health Perspect. 109:141-161. https://doi.org/10.2307/3434853
  21. Sejong City. 2021. Sejong City website. Sejong, Korea. https://www.sejong.go.kr/index.jsp
  22. Statistics Korea. 2020. Statistical Geographic Information Service. Statistics Korea. Daejeon, Korea. https://sgis.kostat.go.kr/view/index
  23. World Health Organization. 2012. Global Strategy for Dengue Prevention and Control 2012-2020. World Health Organization. Geneva.
  24. World Health Organization. 2018. Zika Virus Disease. World Health Organization. Geneva. http://www.who.int/csr/disease/zika/en/
  25. Yeom JS. 2017. Current Status and outlook of mosquito-borne diseases in Korea. J. Korean Med. Assoc. 60:468-474. https://doi.org/10.5124/jkma.2017.60.6.468
  26. Yi HB, BR Devkota, JS Yu and HJ Kim. 2014a. A research for an eco-friendly mosquito control by using a new mosquito trap (Mos-hole trap) in a cowshed in Yeoju of Korea. Anim. Cells Syst. 18:282-290. https://doi.org/10.1080/19768354.2014.938697
  27. Yi HB, BR Devkota, JS Yu, KC Oh, JH Kim and HJ Kim. 2014b. Effects of global warming on mosquitoes & mosquito-borne diseases and the new strategies for mosquito control. Entomol. Res. 44:215-235. https://doi.org/10.1111/1748-5967.12084