DOI QR코드

DOI QR Code

다전략 수학 문제해결 학습이 초등학생의 수학적 창의성과 수학적 태도에 미치는 영향

The Effects of Mathematical Problem Solving with Multiple Strategies on the Mathematical Creativity and Attitudes of Students

  • 투고 : 2021.07.26
  • 심사 : 2021.08.10
  • 발행 : 2021.10.31

초록

본 연구의 목적은 초등학교 6학년 학생에게 다전략 수학 문제해결 지도 후, 학생들의 수학적 창의성과 수학적 태도에 미치는 영향을 알아보기 위한 것이다. 본 연구를 위하여 서울시 S초등학교 6학년 학생 49명(실험집단 26명, 비교집단 23명)을 대상으로 19차시의 수업을 진행한 후, 수학적 창의성 및 태도에 대하여 i-STATistics를 사용하여 t-검정을 실시하였다. 연구의 결과 다전략 수학 문제해결 지도를 통한 수학학습은 초등학교 학생들의 수학적 창의성과 그 하위 요소인 유창성, 융통성, 독창성 신장에 효과가 있었다. 또한 다전략 수학 문제해결 지도를 통한 수학학습은 초등학교 학생의 수학적 태도의 하위 요인 중 수학 흥미, 가치, 의지, 효능감 신장에 효과가 있었다. 그리고 다전략 수학 문제해결 지도를 통한 수학학습이 모든 영역에 걸친 수학적 태도의 변화에 긍정적인 영향을 주었다. 연구자들은 연구 대상의 학년과 인원을 확대한 연구와 심층면담과 같은 질적 연구 방법을 포함한 장기간의 후속 연구를 제안하였다.

The purpose of this study is to investigate the effects of solving multi-strategic mathematics problems on mathematical creativity and attitudes of the 6th grade students. For this study, the researchers conducted a survey of forty nine (26 students in experimental group and 23 students in comparative group) 6th graders of S elementary school in Seoul with 19 lessons. The experimental group solved the multi-strategic mathematics problems after learning mathematics through mathematical strategies, whereas the group of comparative students were taught general mathematics problem solving. The researchers conducted pre- and post- isomorphic mathematical creativity and mathematical attitudes of students. They examined the t-test between the pre- and post- scores of sub-elements of fluency, flexibility and creativity and attitudes of the students by the i-STATistics. The researchers obtained the following conclusions. First, solving multi-strategic mathematics problems has a positive impact on mathematical creativity of the students. After learning solving the multi-strategic mathematics problems, the scores of mathematical creativity of the 6th grade elementary students were increased. Second, learning solving the multi-strategy mathematics problems impact the interest, value, will and efficacy factors in the mathematical attitudes of the students. However, no significant effect was found in the areas of desire for recognition and motivation. The researchers suggested that, by expanding the academic year and the number of people in the study, it is necessary to verify how mathematics learning through multi-strategic mathematics problem-solving affects mathematical creativity and mathematical attitudes, and to verify the effectiveness through long-term research, including qualitative research methods such as in-depth interviews and observations of students' solving problems.

키워드

참고문헌

  1. 강완, 김상미, 박만구, 백석윤. 오영열, 장혜원(2014). 초등수학교육론. 서울: 동명사.
  2. 고호경, 이환철, 이현숙, 이은정, 백승근, 김형식, 윤경란, 김윤정, 정시훈, 이선재, 이지혜(2015). 수학학습실태 조사 및 개선 방안 연구. 한국과학창의재단 연구보고서.
  3. 권오남, 박정숙, 박지현, 조영미(2005). 개방형 문제 중심의 프로그램이 수학적 창의성에 미치는 효과. 수학교육, 44(2), 307-323.
  4. 교육부(2015a). 2015 수학과 개정 교육과정. 교육부.
  5. 교육부(2015b). 초등학교 교사용 지도서 수학 6-2. 서울: 천재교육.
  6. 교육인적자원부(2009). 초등학교 교사용 지도서 수학 6-가. 서울: (주)두산.
  7. 김영아, 김성준(2013). 초등학생들의 문제해결전략에 따른 오류 유형 분석, 한국학교수학회논문집, 16(1), 113-139.
  8. 도주원, 백석윤(2019). 수학 영재아의 문제해결 활동에 대한 메타정의적 관점에서의 특성 분석. 수학교육, 58(4), 519-530.
  9. 박경미, 이환철, 박선화, 권점례, 윤상혁, 강현영 외(2015). 2015 개정 수학과 교육과정 시안 개발 연구 II. 한국과학창의재단 연구보고서.
  10. 박만구(2009). 수학교육에서 창의성의 개념 및 신장방안. 한국수학교육학회지 시리즈 E 수학교육 논문집, 23(3), 803-822.
  11. 박만구(2018). 일반학생, 영재학생, 예비교사, 현직교사의 다전략 수학 문제해결 전략 분석, 한국수학교수학회논문집, 21(4), 419-443.
  12. 백동현, 이경화(2017). 수학적 창의성 관점에서 다중해법 간의 질적 차이 분석. 학교수학, 19(3), 481-494.
  13. 백석윤(2016). 수학 문제해결 교육. 서울: 경문사.
  14. 신현용, 한인기(1999). 수학 영재의 창의력 신장을 위한 방향 모색. 청람수학교육, 8, 15-44.
  15. 이대현(2014). 다양한 해결법이 있는 문제를 활용한 수학적 창의성 측정 방안 탐색. 학교수학, 16, 1-17.
  16. 이예진, 박만구(2020). 사회정의를 위한 수학과 도덕의 통합교수모델 개발 및 효과분석. 수학교육, 59(4), 313-329.
  17. 정혜원, 이경화(2019). 수학적 모델링 활동에서의 집단 창의성 발현 사례연구: 수학적 표현과 모델 도출 활동을 중심으로. 수학교육학연구, 29(2), 251-282.
  18. 한국교육개발원(1989). 생각하는 산수공부 5,6학년용. 한국교육개발원.
  19. Fetterly, J. M. (2020). Fostering mathematical creativity while impacting beliefs and anxiety in mathematics. Journal of Humanistic Mathematics, 10(2), 102-128. https://doi.org/10.5642/jhummath.202002.07
  20. Krulik, S., & Rudnick, J. A. (1993). Reasoning and problem solving: A handbook for elementary school teachers (2nd ed.). Boston, MA: Allyn and Bacon.
  21. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, The University of Chicago press.
  22. Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Rotterdam, The Netherlands: Sense Publishers.
  23. Leikin, R., Anat Levav-Waynberg, A., & Guberman, R. (2011). Employing multiple-solution-tasks for the development of mathematical creativity: Two comparative studies. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.). Proceedings of the seventh Congress for European Research in Mathematics Education (pp. 1094-1103). Rzeszow, Poland.
  24. Lenchner, G. (1983). Creative problem solving In school mathematics. Boston: Houghton Mifflin Company.
  25. Lynch, K., & Star, J. R. (2014). Views of struggling students on instruction incorporating multiple strategies in Algebra I: An exploratory study. Journal for Research in Mathematics Education, 45(1), 6-18. https://doi.org/10.5951/jresematheduc.45.1.0006
  26. National Council of Supervisors of Mathematics. (NCSM) (1977). National Council of Supervisors of Mathematics position paper on basic mathematical skills.. Washington, D.C.: Distributed by ERIC Clearinghouse.
  27. National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. Reston, VA: Author.
  28. Organization for Economic Cooperation and Development [OECD]. (2019). PISA 2018: Insights and interpretations. OECD Publishing. Available from https://www.oecd.org
  29. Polya, G. (1957). How to solve it (2nd ed.). Princeton, NJ: Princeton University Press.
  30. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan.
  31. Sriraman, B. (2009). The characteristics of mathematical creativity. The International Journal on Mathematics Education [ZDM], 41, 13-27.
  32. Taspinar, Z., & Bulut, M. (2012). Determining of problem solving strategies used by primary 8, students' in mathematics class. Procedia-Social and Behavioral Sciences, 46(2012), 3385-3389. https://doi.org/10.1016/j.sbspro.2012.06.071
  33. TIMSS and PIRLS International Study Center. (2016). TIMSS 2015 International results in mathematics. Available from http://timssandpirls.bc.edu
  34. Torrance, E. P. (1995). Why fly? A philosophy of creativity. 이종연 역(2005). 토랜스의 창의성과 교육: 왜 높이 날려 하는가? 서울: 학지사.
  35. Torrance, E. P. (1995). Why fly? A philosophy of creativity. Lee, J. Y Trans.(2005). Torrance's creativity and education: 창의성과 교육: 왜 높이 날려 하는가? 서울: 학지사.