DOI QR코드

DOI QR Code

Study of Superparamagnetic Microneedles containing Iron Oxide Nanoparticles

산화철 나노입자를 함유한 초상자성 마이크로니들에 관한 연구

  • Lee, Seung-Jun (Process Development Lab., Department of Pharmaceutical Science and Engineering, Seowon University)
  • 이승준 (서원대학교 제약공학과 공정개발연구실)
  • Received : 2021.08.11
  • Accepted : 2021.09.17
  • Published : 2021.10.10

Abstract

Recently, iron oxide nanoparticles have been used as the subject of many studies on drug delivery system (DDS) due to their excellent magnetic properties and biocompatibility in response to external magnetic fields. In this study, hyaluronic acid-superparamagnetic microneedles (HA-SMNs) and carboxy methyl cellulose-superparamagnetic microneedles (CMC-SMNs) containing superparamagnetic iron oxide nanoparticles (SIONs) were prepared with HA and CMC as a matrix materials of MNs (microneedles). Various properties of SMNs were then investigated with scanning electron microscopy (SEM), superconducting quantum interference device-vibrating sample magnetometer (SQUD-VSM), frequency mixing magnetic detection (FMMD), and polymer/bio membrane. The SQUID-VSM measurements showed superparamagnetism of HA-SMNs and CMC-SMNs containing SIONs. The FMMD results demonstrated that the signal intensity changed significantly as the concentration of SIONs increased. In addition, SMNs exhibited the average skin permeability intensities on the bio membrane for HA-SMNs and CMC-SMNs were 92.5 and 98.5%, respectively. These results suggested that SMNs could be utilized as deliver materials for a TDDS and MR molecular imaging.

최근 산화철 나노입자는 외부의 자기장에 반응하는 자성의 특성과 생체적합성이 뛰어나 약물전달시스템(drug delivery system, DDS)에 관한 많은 연구의 소재로 사용되어져 왔다. 본 연구에서는 마이크로니들(microneedles, MNs)의 매트릭스 물질로 HA (hyaluronic acid)와 CMC (carboxy methyl cellulose)를 이용하여 SIONs (superparamagnetic iron oxide nanoparticles)이 함유된 HA-SMNs (hyaluronic acid-superparamagnetic microneedles)와 CMC-SMNs (carboxy methyl cellulose-superparamagnetic microneedles)를 제조하였으며, SEM (scanning electron microscopic), SQUD-VSM (superconducting quantum interference device-vibrating sample magnetometer), FMMD (frequency mixing magnetic detection), 고분자 및 바이오 멤브레인을 이용하여 SMNs의 다양한 특성을 조사하였다. SQUID-VSM 측정 결과 SIONs이 포함된 HA-SMNs와 CMC-SMNs에서 초상자성의 특성이 나타났으며, FMMD 측정에서는 SIONs 농도가 증가함에 따라 신호 강도에 변화가 확인되었다. 또한 SMNs의 바이오 막을 통한 HA-SMNs와 CMC-SMNs의 투과도 분석에서는 각각 평균 92.5%와 98.5%의 피부 투과율이 조사되었다. 이러한 결과를 통해 SMNs 제형은 경피약물전달시스템(transdermal drug delivery system, TDDS) 및 MR(magnetic mesonance) molecular imaging 분야의 전달소재로 활용될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 논문 연구의 분석을 위해 도움을 주신 (주)맥솔루션 연구원들과 서원대학교 공정개발연구실 연구원(민현규, 정민희, 구민지, 조수진, 최다혜, 황의주)들에게 감사를 드립니다.

References

  1. J. S. Lee, J. H. Lee, J. K. Shim, and W. Hur, Microencapsulation of Iron Oxide Nanoparticles and Their Application in Magnetic Levitation of Cells, Appl. Chem. Eng., 31(1), 13-18 (2020).
  2. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, and B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293, 483-496 (2005). https://doi.org/10.1016/j.jmmm.2005.01.064
  3. K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy's history, efficacy and application in humans, Int. J. Hyperthermia, 34, 1316-1328 (2018). https://doi.org/10.1080/02656736.2018.1430867
  4. H. K. Min, J. A. Kim, J. C. Kim, and S. J. Lee, Preparation and Characterization of Superparamagnetic Microneedles (SMMNs) containing Magnetic Cubosome Nanoparticles (MCNs), J. Adv. Eng. Technol., 12(3), 103-108 (2019). https://doi.org/10.35272/jaet.2019.12.3.103
  5. S. J. Lee, J. R. Jeong, S. C. Shin, and J. D. Kim, Synthesis and Characterization of Superparamagnetic Maghemite Nanoparticles Prepared by Coprecipitation Technique, J. Magn. Magn. Mater., 282, 147-150 (2004). https://doi.org/10.1016/j.jmmm.2004.04.035
  6. S. J. Lee, J. R. Jeong, S. C. Shin, Y. M. Huh, H. T. Song, J. S. Suh, Y. H. Chang, B. S. Jeon, and J. D. Kim, Intracellular translocation of superparamagnetic iron oxide nanoparticles encapsulated with peptide-conjugated Poly(D,L lactide-co-glycolide), J. Appl. Phys., 97, 10Q913 (2005). https://doi.org/10.1063/1.1853933
  7. S. J. Lee, J. R. Jeong, S. C. Shin, Y. H. Chang, and J. D. Kim, Magnetic Enhancement of Iron Oxide Nanoparticles Encapsulated with Poly(D,L latide-co-glycolide), Colloids Surf. A, 225, 19-25 (2005).
  8. J. R. Jeong, S. J. Lee, J. D. Kim, and S. C. Shin, Magnetic Properties of Fe3O4 Nanoparticle Encapsulated with Poly(D,L Laticde-co-Glycolide), IEEE Trans. Mag., 40(4), 3015-3017 (2004). https://doi.org/10.1109/TMAG.2004.829265
  9. D. Ling, N. Lee, and T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications, Acc. Chem. Res., 48, 1276-1285 (2015). https://doi.org/10.1021/acs.accounts.5b00038
  10. R. Wassel, B. Grady, R. Kopke, and K. Dormer, Dispersion of superparamagnetic iron oxide nanoparticles in poly (D,L-lactide-coglycolide) microparticles, Colloids Surf. A, 292, 125-130 (2007). https://doi.org/10.1016/j.colsurfa.2006.06.012
  11. S. J. Lee, H. J. Kim, Y. M. Huh, I. W. Kim, J. H. Jeong, J. C. Kim, and J. D. Kim, Functionalized magnetic PLGA Nanospheres for Targeting and Bioimaging of breast cancer, J. Nanosci. Nanotechnol., 18, 1542-1547 (2018) https://doi.org/10.1166/jnn.2018.14220
  12. H. Ryu, H. Koo, I. Sun, S. Yuk, K. Choi, K. Kim, and I. Kwon, Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy, Adv. Drug Deliv. Rev., 64, 1447-1458 (2012). https://doi.org/10.1016/j.addr.2012.06.012
  13. H. Na, I. Song, and T. Hyeon, Inorganic nanoparticles for MRI contrast agents, Adv. Mater., 21, 2133-2148 (2009). https://doi.org/10.1002/adma.200802366
  14. Y. G. Kim, S. M. Lee, D. B. Kim, K. M. Noh, K. S. Oh, S. H. Cho, E. P. Choi, K. P. Kim, and K. M. Huh, Preparation and Characterization of Poly(ethylene glycol)-Doxorubicin/SPION Magnetic Nanoparticles for Cancer Therapy, Polymer(Korea), 42(6) 1059-1067 (2018). https://doi.org/10.7317/pk.2018.42.6.1059
  15. J. H. Park, S. O. Choi, S. Seo, Y. B. Choy, and M. R. Prausnitz, A microneedle roller for transdermal drug delivery, Eur. J. Pharm. Biopharm., 76, 282 (2010). https://doi.org/10.1016/j.ejpb.2010.07.001
  16. J. W. Lee, S. O. Choi, E. I. Felner, and M. R. Prausnitz, Dissolving Microneedle Patch for Transdermal Delivery of Human Growth Hormone, Small, 7(4), 531 (2011) https://doi.org/10.1002/smll.201001091
  17. S. K. Han, H. Y. Ha, and S. J. Lee, Fabrication of Microneedles array Combining Biodegradable Hyaluronic acid and Herbal Medicine Lonicera flos, Polymer(Korea), 43(4), 540-546 (2019).
  18. S. K. Han, S. J. Lee, and H. Y. Ha, Skin Moisturizing Effects of a Microneedle Patch Containing Hyaluronic Acid and Lonicerae flos, Processes, 9, 321, 1-8 (2021). https://doi.org/10.3390/pr9020321
  19. G. Bonfante, H. J. Lee, L. Bao, J. H. Park, N. Takama, and B. J. Kim, Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications, Micro Nano Syst. Lett. 8:13 (2020). https://doi.org/10.1186/s40486-020-00113-0
  20. R. V. Dixon, E. Skaria, W. M. Lau, P. Manning, M. A. Birch-Machin, S. M. Moghimi, and K. W. Ng, Microneedle-based devices for point-of-care infectious disease diagnostics, Acta Pharm. Sin. B., 11(8), 2344-2361 (2021). https://doi.org/10.1016/j.apsb.2021.02.010
  21. Z. Wang, J. Luan, A. Seth, L. Liu, M. You, P. Gupta, P. Rathi, Y. Wang, S. Cao, Q. Jiang, X. Zhang, R. Gupta, Q. Zhou, J. J. Morrissey, E. L. Scheller, J. S. Rudra, and S. Singamaneni, Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid, Nat. Biomed. Eng., 5, 64-76 (2021). https://doi.org/10.1038/s41551-020-00672-y
  22. S. J. Lee, Fabrication and Characterization of Micropatterned Elastomeric PDMS Mold, J. Adv. Eng. Technol., 20(3), 335 (2017).
  23. C. B. Kim, E. G. Lim, S. W. Shin, H. J. Krause, and H. B. Hong, Magnetic immunoassay platform based on the planar frequency mixing magnetic technique, Biosens. Bioelectron., 83(15), 293-299 (2016). https://doi.org/10.1016/j.bios.2016.04.076
  24. H. B. Hong, H. J. Krause, I. H. Nam, C. J. Choi, and S. W. Shin, Magnetic immunoassay based on frequency mixing magnetic detection and magnetic particles of different magnetic properties, Anal. Methods, 6(19), 8055-8058 (2014). https://doi.org/10.1039/C4AY01283F
  25. H. J. Krause, N. Wolters, Y. Zhang, A. Offenhausser, P. Miethe, M. Meyer, M. Hartmann, and M. Keusgen, Magnetic particle detection by frequency mixing for immunoassay applications, J. of J. Magn. Magn. Mater., 311, 436-444 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1164
  26. S. J. Lee, J. R. Jeong, S. C. Shin, J. C. Kim, Y. H. Chang, Y. M. Chang, and J. D. Kim, Nanoparticles of magnetic ferric oxides encapsulated with poly (D, L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent, J. Magn. Magn. MAter., 272-276, 2432-2433 (2004). https://doi.org/10.1016/j.jmmm.2003.12.416
  27. H. Li, S. Yang, D. Hui, and R. Hong, Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging, Nanotechnol. Rev., 9, 1265-1283 (2020). https://doi.org/10.1515/ntrev-2020-0095