DOI QR코드

DOI QR Code

Effect of Guest Molecules on Structure and Properties of Polymer/beta-Cyclodextrin Inclusion Compound Hybrid Films

고분자/베타-사이클로덱스트린 포접 화합물로 이루어진 고분자 혼성체 필름의 물성 및 구조에 미치는 게스트 분자의 영향

  • Bae, Joonwon (Department of Applied Chemistry, Dongduk Women's University)
  • 배준원 (동덕여자대학교 응용화학과)
  • Received : 2021.07.22
  • Accepted : 2021.08.12
  • Published : 2021.10.10

Abstract

In this study, the effect of molecular features of guest molecules on the structure, property, and formation of poly(vinyl alcohol) (PVA)/beta-cyclodextrin (bCD) inclusion compound hybrid films was investigated using three types of guest molecules such as hydroquinone (HQ), arbutin (AB), and tranexamic acid (TA). First, the successful formation of inclusion compounds between bCD and the guest molecules, and polymer/inclusion compound hybrid were proved using Raman spectroscopy. The effect of bCD-based inclusion compounds on the structure and property of PVA matrix composites containing inclusion compounds was also studied using X-ray diffraction (XRD) and thermal analyses such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was notable that the effect of TA to the crystalline structure of the PVA was significantly different from that of using other guest molecules including HQ and AB. It was also supported by a simple molecular simulation result. This article will be a good example for demonstrating the effect of molecular characteristics on the inclusion compound formation in polymer films, which can provide important information for relevant future research.

본 연구에서는 게스트 분자(guest molecule)의 특성이 고분자/베타-사이클로덱스트린(beta-cyclodextrin) 포접화합물(inclusion compound)로 이루어진 고분자 필름의 구조 및 물성에 미치는 영향에 대해서 고찰하고자 한다. 본 연구에서 사용된 게스트 분자는 미백 효과를 지니는 것으로 알려진 3가지로 하이드로퀴논(hydroquinone, HQ), 알부틴(arbutin, AB), 그리고 트랜액사믹 애시드(tranexamic acid, TA)이다. 먼저, 베타-사이클로덱스트린과 게스트 분자 간의 포접화합물의 성공적인 형성과 이를 포함하는 고분자 필름의 제조여부를 라만(Raman) 분광학으로 확인하였다. 포접화합물을 포함하는 고분자 필름의 구조 및 물성은 엑스선 회절법(X-ray diffraction)과 주사열용량법 및 열중량추적법 같은 열분석법으로 고찰하였다. 그 결과, 트랜액사믹 애시드의 영향이 다른 분자의 영향과 비교하여 상당히 상이하였음을 관찰할 수 있었다. 이러한 경향은 간단한 분자 시뮬레이션 기법으로 재검증하였다. 본 연구는 포접화합물을 형성하는 게스트 분자들의 상이한 영향에 대한 체계적인 접근을 통한 실험적 검증의 사례로 향후 관련 연구에 중요한 정보를 제공할 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 동덕여자대학교의 연구년 지원으로 수행되었습니다. (2020년)

References

  1. C. Folch-Cano, M. Yazdani-Pedram, and C. Olea-Azar, Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects, Molecules, 19, 14066-14079 (2014). https://doi.org/10.3390/molecules190914066
  2. J. Bae, K. Shin, O. S. Kwon, Y. Hwang, J. An, A. Jang, H. J. Kim, and C. S. Lee, A succinct review of refined chemical sensor systems based on conducting polymer-cyclodextrin hybrids, J. Ind. Eng. Chem., 79, 19-28 (2019). https://doi.org/10.1016/j.jiec.2019.06.051
  3. L. Liu, K. S. Song, X. S. Li, and Q. X. Guo, Charge-transfer Interaction: A driving force for cyclodextrin inclusion complexation. J. Inclusion Phenom. Macrocycl. Chem., 40, 35-39 (2001). https://doi.org/10.1023/A:1011170026406
  4. M. Park, S. Kim, and J. Bae, Study on Electrochemical Detection of Cyclodextrin-molecule Interactions for Sensor Applications, Appl. Chem. Eng., 29, 519-523 (2018). https://doi.org/10.14478/ACE.2018.1041
  5. J. Bae, Y. Hwang, J. H. Ha, O. S. Kwon, A. Jang, H. J. Kim, J. An, C. S. Lee, and S. H. Park, Versatile chemical sensors using oligosaccharides on cleanable PDMS/graphene hybrids for monitoring environmentally hazardous substances, Appl. Surf. Sci., 507, 145139 (2020). https://doi.org/10.1016/j.apsusc.2019.145139
  6. U. Kaneto, F. Hirayama, and T. Irie, Cyclodextrin Drug Carrier Systems, Chem. Rev., 98, 2045-2076 (1998). https://doi.org/10.1021/cr970025p
  7. S. M. Lemma, M. Scampicchio, P. J. Mahon, I. Sbarski, J. Wang, and P. J. Kingshott, Controlled release of retinyl acetate from β-cyclodextrin functionalized poly(vinyl alcohol) electrospun nanofibers, J. Agric. Food Chem., 63, 3481-3488 (2015). https://doi.org/10.1021/acs.jafc.5b00103
  8. G. Narayanan, R. Aguda, M. Hartman, C. C. Chung, R. Boy, B. S. Gupta, and A. J. Tonelli, Fabrication and characterization of poly (ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers, Biomacromolecules, 17, 271-279 (2016). https://doi.org/10.1021/acs.biomac.5b01379
  9. T. Dong, Y. He, B. Zhu, K. M. Shin, and Y. Inoue, Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers, Macromolecules, 38, 7736-7744 (2005). https://doi.org/10.1021/ma050826r
  10. K. -M. Shin, T. Dong, Y. He, Y. Taguchi, A. Oishi, H. Nishida, and Y. Inoue, Inclusion complex formation between α-cyclodextrin and biodegradable aliphatic polyesters, Macromol. Biosci., 4, 1075-1083 (2004). https://doi.org/10.1002/mabi.200400118
  11. M. Wei, W. Davis, B. Urban, Y. Song, F. E. Porbeni, W. Wang, J. L. White, C. M. Balik, C. C. Rusa, J. Fox, and A. J. Tonelli, Manipulation of Nylon-6 Crystal Structures with Its α-Cyclodextrin Inclusion Complex, Macromolecules, 35, 8039-8044 (2002). https://doi.org/10.1021/ma020765m
  12. T. Dong, W. Kai, P. Pan, A. Cao, and Y. Inoue, Effects of host-guest stoichiometry of α-cyclodextrin-aliphatic polyester inclusion complexes and molecular weight of guest polymer on the crystallization behavior of aliphatic polyesters, Macromolecules, 40, 7244- 7251 (2007). https://doi.org/10.1021/ma071374g
  13. J. Bae, Identification of Toxic Chemicals Using Polypyrrole-Cyclodextrin Hybrids, Appl. Chem. Eng., 30, 186-189 (2019). https://doi.org/10.14478/ACE.2018.1117
  14. T. Uyar, M. A. Hunt, H. S. Gracz, and A. J. Tonelli, Crystalline cyclodextrin inclusion compounds formed with aromatic guests: guest dependent stoichiometries and hydration-sensitive crystal structures, Cryst. Growth. Des., 6, 1113-1119 (2006). https://doi.org/10.1021/cg050500+
  15. H. Xiao, X. Kong, J. Bao, and S. Zhang, Preparation of poly(vinyl alcohol) and hydroxypropyl-β-cyclodextrin inclusion complex through polymer processing. Polym. Eng. Sci., 55, 1988-1993 (2015). https://doi.org/10.1002/pen.24040