DOI QR코드

DOI QR Code

Mild and Efficient Synthesis of Sodium Dodecanoyl-4-oxybenzenesulfonate using Water and Polar Aprotic Solvent Mixed System and Its Application as a Bleach Activator

물과 극성 비양자성 용매 혼합 계를 이용한 4-도데카노일옥시벤젠술폰산 나트륨의 효율적인 합성 및 표백활성화제로의 응용

  • Kwak, Sang-Woon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Cha, Kyung-on (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jeong, Kook-In (BJ BIOCHEM, Inc.) ;
  • Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 곽상운 (충남대학교 응용화학공학과) ;
  • 차경온 (충남대학교 응용화학공학과) ;
  • 정국인 ((주) 비제이바이오켐) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Received : 2021.08.05
  • Accepted : 2021.09.13
  • Published : 2021.10.10

Abstract

Sodium dodecanoyl-4-oxybenzenesulfonate (DOBS) salt is a substance that exhibits effective bleaching and antimicrobial abilities at low temperatures. A mild and efficient synthesis method of DOBS starting from dodecanoyl chloride and sodium 4-hydroxybenzene sulfonate was investigated under alkaline conditions using a water (W)-polar aprotic solvent system. First, the reaction was carried out using only water as a solvent system with the variables of temperature and time. The yield was found to be as low as about 5% in most cases under the reaction conditions of more than 30 ℃ and 1 h. In order to develop an efficient solvent system, the effect on the yield of DOBS was evaluated in various solvent systems which were prepared by changing the type of polar aprotic solvents while mixing them with the water. A solvent system in which acetone (AC) and water were mixed showed the best yield and about 82 % under mild reaction conditions (30 ℃, 1 h and atmospheric pressure) was obtained. The prepared DOBS showed good bleaching and antimicrobial activities indicating that it could be used an excellent bleach activator.

4-도데카노일옥시벤젠술폰산나트륨(sodium dodecanoyl-4-oxybenzenesulfonate; DOBS) 염은 저온에서도 효과적인 표백력과 살균력을 나타내는 물질이다. 본 연구에서는 물(W)-극성 비양자성 용매 계를 사용하는 알칼리 조건하에서 dodecanoyl chloride와 sodium 4-hydroxybenzene sulfonate로부터 DOBS의 온화하고 효율적인 합성방법을 조사하였다. 먼저 물만을 용매로 사용하고 온도 또는 시간을 변화시키며 반응한 결과, 수율은 30 ℃와 1 h 이상의 반응 조건에서 대부분 약 5% 정도로 낮게 나타났다. 효율적인 용매 계를 발견하기 위하여 극성 비양자성 용매의 종류를 변화시키며 물과 혼합하여 제조한 다양한 용매계에서 수율에 미치는 영향을 평가하였다. 수율은 아세톤(acetone; AC)과 물을 혼합한 용매 계에서 가장 우수하였으며, 온화한 반응조건(30 ℃, 1 h 및 상압)의 반응에서 약 82%의 높은 값을 나타냈다. 제조한 DOBS는 높은 표백력 및 살균력을 보여 표백활성화제로서 활용이 가능함을 확인하였다.

Keywords

References

  1. Y. S. Kang, Theory and Technology of Laundry Detergents, 1st ed., 160-161, Yewonsa, Seoul, Korea (2001).
  2. Y. S. Kang, Theory and Technology of Laundry Detergents, 1st ed., 182-183, Yewonsa, Seoul, Korea (2001).
  3. E. Smulders, Laundry Detergents, 29-32, Wiley-VCH, Weinheim, Germany (2001).
  4. G. McDonnell, A.D. Russell, Antiseptics and disinfectants: activity, action and resistance, Clin. Microbiol. Rev., 12, 147- 179 (1999). https://doi.org/10.1128/cmr.12.1.147
  5. S. R. Kim, Science of detergents and laundry, 2nd ed., 85, Gyomoonsa, Paju, Korea (2013).
  6. G. Becker, Washing and Cleaning Composition, Tenside Detergents, 13, 16-17 (1976). https://doi.org/10.1515/tsd-1976-130106
  7. W. S. Hickman, Peracetic acid and its use in fibre bleaching, Rev. Prog. Color., 32, 13 (2002).
  8. D. M. Davies and M. E. Deary, Kinetics of the Hydrolysis and Perhydrolysis of Tetraacetylethylenediamine, a Peroxide Bleach Activator, J. Chem. Soc., 2, 1549-1552 (1991).
  9. S. Y. Chung and G. L. Spadini, Bleaching Composition US Patent 4,412,934 (1983).
  10. M. TSUMADORI, Trends and Technological Developments in Laundry Products in Japan, J. Oleo Sci., 50, 367-372 (2001). https://doi.org/10.5650/jos.50.367
  11. N. J. miline, Oxygen Bleaching Systems in Domestic Laundry, J. Surfactants Deterg., 1, 255-261 (1998).
  12. Z. Song, X. Chen, Z. Wang, S. King, H. Yan, K. Cai and J. Cheng, Potential bleach activators with improved imide hydrolytic stability, Int. J. Ind. Chem., 11, 177-185 (2020). https://doi.org/10.1007/s40090-020-00210-4
  13. H. Zeng and R. Tang, Application of a novel bleach activator to low temperature bleaching of raw cotton fabrics, J. Text. Inst., 106, 807-813, (2014). https://doi.org/10.1080/00405000.2014.945764
  14. W. Chen, L. Wang, D. Wang, J. Zhang, C. Sun and C. Xu, Recognizing a limitation of the TBLC-activated peroxide system on low-temperature cotton bleaching, Carbohydr. Polym., 140, 1-5 (2016). https://doi.org/10.1016/j.carbpol.2015.12.013
  15. D. Shao, G. Liu, H. Chen, C. Xu and J. Du, Combination of Surfactant Action with Peroxide Activation for RoomTemperature Cleaning of Textiles, J. Surfactants Deterg., 24, 357-364 (2020).
  16. C. Berry and B. Rouge, Process for producing acyloxybenzenesulfonate salts, US Patent 4,544,503 (1985).
  17. W. Wellbrock and A. Studeneer, Continuous process for the production of acyloxybenzenesulfonic acids, US Patent 4,803,015 (1989).
  18. N. Peter and W. Mueller, Process for the preparation of acyloxybenzenesulfonates, WO 054,960 (2004).
  19. J. Sankey and W. Sanderson, Preparation of sulfophenyl esters, US Patent 4,704,236 (1987).
  20. D. Direktor and R. Effenberger, Phase transfer catalyzed esterification of phenols with aliphatic acid chlorides, J. Chem. Technol. Biotechnol., 35, 281-284 (1985).
  21. D. Dumas and V. Subramanyam, Process for preparing benzenesulfonate salts, US Patent 5,069,828 (1991).
  22. A. Simion, I. Hashimoto, Y. Mitom, N. Egashira, and C. Simion, O-Acylation of Substituted Phenols with Various Alkanoyl Chlorides Under Phase-Transfer Catalyst Conditions, Synth. Commun., 42, 921-931 (2012). https://doi.org/10.1080/00397911.2011.584007
  23. H. Yang and C. Huang, Kinetics for benzoylation of sodium phenoxide by liquid-liquid phase-transfer catalysis, Appl. Catal. A: Gen., 299, 258-265 (2006). https://doi.org/10.1016/j.apcata.2005.10.042
  24. ASTM D3049-89, Standard test method for synthetic anionic ingredient by cationic titration, American Society for Testing and Materials(ASTM), Philadelphia, USA (2003).
  25. KSM 2709, Testing methods for synthetic detergent, Korean Agency for Technology and Standards, Korea (2006).
  26. K. O. Huh, Life Science Research Methods and Statistical Analysis, 2nd ed., 354-365, Gyomoonsa, Paju, Korea (2011).
  27. F. Ruff and O Farkas, Concerted SN2 mechanism for the hydrolysis of acid chlorides: comparisons of reactivities calculated by the density functional theory with experimental data, J. Phys. Org. Chem., 24, 480-491 (2010). https://doi.org/10.1002/poc.1790
  28. G. Zimmerman and C. Yuan, The Kinetics of Hydrolysis of Acetyl Chloride in Acetone-Water Mixtures, J. Am. Chem. Soc., 77, 332-333 (1955). https://doi.org/10.1021/ja01607a026
  29. H. Yang and D. Lin, Third-liquid phase-transfer catalyzed esterification of sodium benzoate with novel dual-site phase-transfer catalyst under ultrasonic irradiation, Catal. Commun., 14, 101-106 (2011). https://doi.org/10.1016/j.catcom.2011.07.026
  30. S. Moldoveanu and V. David, Essentials in Modern HPLC Separations, 363-447, Elsevier, Waltham, USA (2013).