Acknowledgement
This research was supported by the Opening Fund of Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education (Grant No. LNTCCMA-20210112) and the National Natural Science Foundation of China (Grant No. 52078104).
References
- Armitt, J., Cojan, M., Manuzio, C. and Nicolini, P. (1975), "Calculation of wind loadings on components of overhead lines", Proceedings of the Institution of Electrical Engineers, 122(11), 1247-1252. https://doi.org/10.1049/piee.1975.0306
- ASCE 74-2009 (2009), Guidelines for Electrical Transmission Line Structural Loading Third Edition, American Society of Civil Engineers; Washington, U.S.A.
- Augusti, G., Borri, C. and Gusella, V. (1990), "Simulation of wind loading and response of geometrically non-linear structures with particular reference to large antennas", Struct. Safety, 8(1-4), 161-179. https://doi.org/10.1016/0167-4730(90)90038-Q
- Cebon, D. (1993), Interaction Between Heavy Vehicles and Roads, SP-951; Society of Automotive Engineers. http://dx.doi.org/10.4271/930001.
- Davenport, A.G. (1961), "The spectrum of horizontal gustiness near the ground in high winds", Quart. J. Royal Meteorol. Soci., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208.
- Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech.-ASCE., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778).
- Ding, Q.S., Zhu, L.D. and Xiang, H.F. (2006), "Simulation of stationary Gaussian stochastic wind velocity field", Wind Struct., 9(3), 231-243. http://dx.doi.org/10.12989/was.2006.9.3.231.
- DL/T 5551-2018 (2018), Load Code for Design of Overhead Transmission Line, National Energy Administration; Beijing, China.
- Dua, A., Clobes, M., Hobbel, T. and Matsagar, V. (2015), "Dynamic Analysis of Overhead Transmission Lines under Turbulent Wind Loading", Electron. J. Struct. Eng., 5 359-371. http://creativecommons.org/licenses/by/4.0/.
- El Damatty, A. and Elawady, A. (2018), "Critical load cases for lattice transmission line structures subjected to downbursts: Economic implications for design of transmission lines", Eng. Struct., 159 213-226. https://doi.org/10.1016/j.engstruct.2017.12.043.
- Fang, J. and Porte-Agel, F. (2015), "Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer", Bound. Layer Meteorol., 155(3), 397-416. https://doi.org/10.1007/s10546-015-0006-z.
- Fu, X. and Li, H. (2016), "Dynamic analysis of transmission tower-line system subjected to wind and rain loads", J. Wind Eng. Ind. Aerod., 157, 95-103. https://doi.org/10.1016/j.jweia.2016.08.010.
- Fu, X., Li, H., Li, G. and Dong, Z. (2020), "Fragility analysis of a transmission tower under combined wind and rain loads", J. Wind Eng. Ind. Aerod., 199, 104098. https://doi.org/10.1016/j.jweia.2020.104098
- Fu, X., Li, H., Li, G., Dong, Z. and Zhao M. (2021), "Failure analysis of a transmission line considering the joint probability distribution of wind speed and rain intensity", Eng. Struct., 233, 111913. https://doi.org/10.1016/j.engstruct.2021.111913.
- Harris, R.I. (1971), The Natural of the Wind, the Modern Design of Wind-Sensitive Structures, Construction Industry Research and Information Association, London.
- He, G., Jin, G. and Yang, Y. (2017), "Space-time correlations and dynamic coupling in turbulent flows", Annu. Rev. Fluid Mech., 49, 51-70. https://doi.org/10.1146/annurev-fluid-010816-060309.
- Higgins, C.W., Froidevaux, M., Simeonov, V., Vercauteren, N., Barry, C. and Parlange, M.B. (2012), "The effect of scale on the applicability of Taylor's frozen turbulence hypothesis in the atmospheric boundary layer", Bound. Lay. Meteorol., 143(2), 379-391. https://doi.org/10.1007/s10546-012-9701-1.
- Huang, G., Liao, H. and Li, M. (2013), "New formulation of Cholesky decomposition and applications in stochastic simulation", Probabil. Eng. Mech., 34 40-47. https://doi.org/10.1016/j.probengmech.2013.04.003.
- Hutchins, N., Chauhan, K., Marusic, I., Monty, J. and Klewicki, J. (2012), "Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory", Bound. Lay. Meteorol., 145(2), 273-306. https://doi.org/10.1007/s10546-012-9735-4
- Iannuzzi, A. and Spinelli, P. (1987), "Artificial wind generation and structural response", J. Struct. Eng.-ASCE., 113(12), 2382-2398. https://doi.org/10.1007/s10546-012-9735-4.
- Iwatani, Y. (1982), "Simulation of multidimensional wind fluctuations having any arbitrary power spectra and cross spectra", J. Wind Eng., 1982(11), 5-18. https://doi.org/10.5359/jawe1980.1982.5.
- Jacob, C. and Anderson, W. (2017), "Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: Insights for aeolian processes", Bound. Lay. Meteorol., 162(1), 21-41. https://doi.org/10.1007/s10546-016-0183-4.
- Kaimal, J., Wyngaard, J., Izumi, Y. and Cote, R. (1972), "Spectral characteristics of surface-layer turbulence", Quart. J. Royal Meteorol. Soc., 98 563-589. https://doi.org/10.1002/qj.49709841707.
- Kitagawa, T. and Nomura, T. (2003), "A wavelet-based method to generate artificial wind fluctuation data", J. Wind Eng. Ind. Aerod., 91(7), 943-964. https://doi.org/10.1016/S0167-6105(03)00037-0.
- LI, C. and LIU, C. (2010), "RBF-neural-network-based harmony superposition method", J. Vib. Shock, 29(1), 112-116. https://doi.org/10.3969/j.issn.1000-3835.2010.01.024
- Li, Y., Zhou, S. and Qiang, S. (2003), "Simulation of three-dimensional fluctuating wind field for large span cable-stayed bridge", China Civil Eng. J.., 36(10), 60-65. https://doi.org/10.3321/j.issn:1000-131X.2003.10.012
- Mara, T.G., Hong, H.P., Lee, C.S. and Ho, T.C.E. (2016), "Capacity of a transmission tower under downburst wind loading", Wind Struct., 22(1), 65-87. http://dx.doi.org/10.12989/was.2016.22.1.065.
- Martinez-Vazquez, P. (2020), "Wind design spectra for generalisation", Wind Struct., 30(2), 155-163. https://doi.org/10.12989/was.2020.30.2.155
- Matheson, M.J. and Holmes, J.D. (1981), "Simulation of the dynamic response of transmission lines in strong winds", Eng. Struct., 3(2), 105-110. https://doi.org/10.1016/0141-0296(81)90036-5.
- Mignolet, M.P. and Spanos, P.D. (1992), "Simulation of homogeneous two-dimensional random fields. I. AR and ARMA models", Transact. ASME. J. Appl. Mech., 59(2), S260-S269. https://doi.org/10.1115/1.2899499.
- Ozono, S. and Maeda, J. (1992), "In-plane dynamic interaction between a tower and conductors at lower frequencies", Eng. Struct., 14(4), 210-216. https://doi.org/10.1016/0141-0296(92)90009-F,
- Feng, P., Bingnan, S. and Yong, C. (2008), "Three-dimensional numerical simulation of spatial-correlated stochastic wind field based on double POD model", Eng. Mech., 25(3), 200-205.
- Panofsky, H.A., Thomson, D.W., Sullivan, D.A. and Moravek, D.E. (1974), "Two-point velocity statistics over Lake Ontario", Bound. Lay. Meteorol., 7(3), 309-321. https://doi.org/10.1007/BF00240834.
- Rossi, R., Lazzari, M. and Vitaliani, R. (2004), "Wind field simulation for structural engineering purposes", Int. J. Numer. Meth. Eng., 61(5), 738-763. https://doi.org/10.1002/nme.1083.
- Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128. https://doi.org/10.1016/0022-460X(72)90600-1.
- Simiu, E. and Yeo, D. (2019), Wind Effects on Structures: Modern Structural Design for Wind, John Wiley & Sons Ltd, West Sussex.
- Spanos, P.D. and Mignolet, M.P. (1992), "Simulation of homogeneous two-dimensional random fields. II. MA and ARMA models", Transact. ASME. J. Appl. Mech., 59(2), S270-S277. https://doi.org/10.1115/1.2899499.
- Tamura, Y., Kawai, H., Uematsu, Y., Marukawa, H., Fujii, K. and Taniike, Y. (1996), "Wind load and wind-induced response estimations in the recommendations for loads on buildings, AIJ 1993", Eng. Struct., 18(6), 399-411. https://doi.org/10.1016/0141-0296(95)00121-2.
- Tian-you, T.A.O. and Hao, W. (2017), "Reduced simulation of the wind field based on Hermite interpolation", 工程力学, 34(3), 182-188. https://doi.org/10.6052/j.issn.1000-4750.2015.09.0768.
- Taylor, G.I. (1938), "The spectrum of turbulence", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 164(919), 476-490.
- Tian, L., Zhang, X. and Fu, X. (2020), "Fragility analysis of a long-span transmission tower-line system under wind loads", Advan. Struct. Eng., 23(10), 1369433220903983. https://doi.org/10.1177%2F1369433220903983. https://doi.org/10.1177%2F1369433220903983
- Veers, P.S. (1988), Three-Dimensional Wind Simulation (No. SAND-88-0152C; CONF-890102-9), Sandia National Labs., Albuquerque, NM (USA).
- Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proceedings of the National Academy of Sciences of the United States of America, 34(11), 530. https://dx.doi.org/10.1073%2Fpnas.34.11.530. https://doi.org/10.1073%2Fpnas.34.11.530
- Wang, D., Chen, X. and Li, J. (2017), "Prediction of wind-induced buffeting response of overhead conductor: Comparison of linear and nonlinear analysis approaches", J. Wind Eng. Ind. Aerod., 167, 23-40. https://doi.org/10.1016/j.jweia.2017.04.008.
- Yamada, M. and Ohkitani, K. (1991), "Orthonormal wavelet analysis of turbulence", Fluid Dyn. Res., 8(1-4), 101-115. https://doi.org/10.1016/0169-5983(91)90034-G
- Yang, J. and He, E. (2019), "Modeling of the spatial turbulent wind field based on the modified inverse Fourier transform", Renew. Energy Resoure., 37(11), 1661-1665.
- Yasui, H., Marukawa, H., Momomura, Y. and Ohkuma, T. (1999), "Analytical study on wind-induced vibration of power transmission towers", J. Wind Eng. Ind. Aerod., 83 431-441. https://doi.org/10.1016/S0167-6105(99)00091-4.
- Zeldin, B.A. and Spanos, P.D. (1996), "Random field representation and synthesis using wavelet bases", J. Appl. Mech. Transact. ASME, 63(4), 946-952. https://doi.org/10.1115/1.2787251.
- Zhang, J., Guo, W. and Xiang, C. (2013), "Simulation of stochastic wind field based on covariance proper transformation and weighted amplitude wave superposition", J. Vib. Shock, 32(21), 197-203.
- Zhu, Z. and Huang, Y. (2017), "Interpolation algorithm for fluctuating wind field simulation of long-span bridges", J. Vib. Shock, 36(7), 156-163.
- Zou, L., Li, F., Liang, S., Shi, T. and Chen, Y. (2019), "Study on spatial correlation of along-wind fluctuating wind load of lattice tower", J. Hunan Univ. (Natural Sciences), 46(7), 96-103.