DOI QR코드

DOI QR Code

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery

주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성

  • Oh, KkochNim (Automotive Steel Surface Research Group, POSCO Technical Research Laboratories) ;
  • Lee, Kyu Hyuk (Department of Advanced Materials Engineering, Graduate School of Chosun University) ;
  • Jang, HeeJin (Department of Materials Science and Engineering, Chosun University)
  • 오꽃님 (포스코 기술연구소) ;
  • 이규혁 (조선대학교 대학원 첨단소재공학과) ;
  • 장희진 (조선대학교 신소재공학과)
  • Received : 2021.07.28
  • Accepted : 2021.10.13
  • Published : 2021.10.31

Abstract

In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Keywords

References

  1. Y. Yu, J. Wang, P. Zhang, and J. Zhao, A detailed thermal study of usual LiNi0.5Co0.2Mn0.3O2, LiMn2O4 and LiFePO4 cathode materials for lithium ion batteries, Journal of Energy Storage, 12, 37 (2017). Doi: https://doi.org/10.1016/j.est.2017.03.016
  2. I. Kim, A case study on the effect of storage systems on a distribution network enhanced by high-capacity photovoltaic systems, Journal of Energy Storage, 12, 121 (2017). Doi: https://doi.org/10.1016/j.est.2017.04.010
  3. M. Ouyang, X. Feng, X. Han, L. Lu, Z. Li, and X. He, A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery, Applied Energy, 165, 48 (2016). Doi: https://doi.org/10.1016/j.apenergy.2015.12.063
  4. P. Tong, R. Zhao, R. Zhang, F. Yi, G. Shi, A. Li, and H. Chen, Cast and 3D printed ion exchang membranes for monolithic microbial fuel cell fabrication, Journal of Power Sources, 289, 91 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.04.113
  5. B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, and Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery, Journal of Power Sources, 270, 332 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2014.07.145
  6. Y. Yuan, C. Sun, M. Li, S. S. Choi, and Q. Li, Determination of optimal supercapacitor-lead-acid battery energy storage capacity for smoothing wind power using empirical mode decomposition and neural network, Electric Power Systems Research, 127, 323 (2015). Doi: https://doi.org/10.1016/j.epsr.2015.06.015
  7. X. Lang, D. Wnag, and J. Zhu, Modified titanium foil's surface by high temperature carbon sintering method as the substrate for bipolar lead-acid battery, Journal of Power Sources, 272, 176 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2014.08.072
  8. M. Saakes, C. Kleijnen, D. Schmal, and P. T. Have, Advanced bipolar lead-acid battery for hybrid electric vehicles, Journal of Power Sources, 95, 68 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00609-1
  9. Y. Sun, H. Jou, and J. Wu, Proc. 8th Int. Conf. on Intelligent Systems Design and Applications (ISDA), p. 362, IEEE, Kaohsiung, Taiwan (2008).
  10. A. Delaille, M. Perrin, F. Huet, and L. Hernout, Study of the "coup de fouet" of lead-acid cells as a function of their state-of-change and state-of-health, Journal of Power Sources, 158, 1019 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2005.11.015
  11. S. Zhong, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Evaluation of lead-calcium-tin-aluminium grid alloys for valve-regulated lead/acid batteries, Journal of Power Sources, 59, 123 (1996). Doi: https://doi.org/10.1016/0378-7753(95)02312-7
  12. D. Berndt, Valve-regulated lead-acid batteries, Journal of Power Sources, 95, 2 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00634-0
  13. S. Oh, Ph. D. Thesis, pp. 5 - 12, Chonnam National University, Gwangju (2001).
  14. S. Zhong, J. Wang, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Influence of alloying with bismuth on electrochemical behaviour of lead-calcium-tin grid alloys, Journal of Power Sources 66, 107 (1997). Doi: https://doi.org/10.1016/S0378-7753(96)02535-9
  15. S. Zhong, J. Wang, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Influence of bismuth on hydrogen and oxygen evolution on lead-calcium-tin-aluminium grid alloys, Journal of Power Sources 66, 159 (1997). Doi: https://doi.org/10.1016/S0378-7753(96)02478-0
  16. S. Oh and H. Choe, Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface, Journal of the Korean Institute of Surface Engineering, 40, 225 (2007). Doi: https://doi.org/10.5695/JKISE.2007.40.5.225
  17. E. M. Lehockeya, D. Limogesa, G. Palumboa, J. Sklarchukb, K. Tomantschgerb, and A. Vinczeb, On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering, Journal of Power Sources, 78, 79 (1999). Doi: https://doi.org/10.1016/S0378-7753(99)00015-4
  18. R. E. Sanders Jr., Continuous castiong for aluminum sheet: a product perspective, Journal of Metals, 64, 291 (2012). Doi: https://doi.org/10.1007/s11837-012-0247-y
  19. W. Szczypiorski and D. Hazelett, Proc. ALCASTEK 2008, Mumbai, India (2008).
  20. J. Byers, Annual TMS Meeting (G.W. Warren), TMS, Las Vegas, NV (1995).
  21. L. C. Peixoto, W. R. Osorio, and A. Garcia, Microstructure and electrochemical corrosion behavior of a Pb1wt%Sn alloy for lead-acid battery components, Journal of Power Sources, 192, 724 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2009.02.081
  22. D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-I. Corrosion processes and anodic dissolution of antimony, Electrochimica Acta, 36, 2081 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85213-Q
  23. D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-II. Formation and properties of the primary anodic layer, Electrochimica Acta, 36, 2087 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85214-R
  24. M. Pourbaix, Atlas of Electrochemical Equilibria, pp. 485 - 492, Pergamon Press (1966).
  25. P. Jones and H.R. Thirsk, An electrochemical and structural investigation of the processes occurring at silver anodes in sulphuric acid, Transactions of the Faraday Society, 50, 732 (1954). https://pubs.rsc.org/en/content/articlelanding/1954/tf/tf9545000732 https://doi.org/10.1039/TF9545000732
  26. J. J. McGinnity and M. J. Nicol, The role of silver in enhancing the electrochemical activity of lead and lead-silver alloy anodes, Hydrometallurgy 144-145, 133 (2014). Doi: https://doi.org/10.1016/j.hydromet.2014.02.005
  27. Y. Yamamoto, K. Fumino, T. Ueda, and M. Nambu, A potentiodynamic study of the lead electrode in sulphuric acid solution, Electrochimica Acta 37, 199 (1992). Doi: https://doi.org/10.1016/0013-4686(92)85003-4