References
- Y. Yu, J. Wang, P. Zhang, and J. Zhao, A detailed thermal study of usual LiNi0.5Co0.2Mn0.3O2, LiMn2O4 and LiFePO4 cathode materials for lithium ion batteries, Journal of Energy Storage, 12, 37 (2017). Doi: https://doi.org/10.1016/j.est.2017.03.016
- I. Kim, A case study on the effect of storage systems on a distribution network enhanced by high-capacity photovoltaic systems, Journal of Energy Storage, 12, 121 (2017). Doi: https://doi.org/10.1016/j.est.2017.04.010
- M. Ouyang, X. Feng, X. Han, L. Lu, Z. Li, and X. He, A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery, Applied Energy, 165, 48 (2016). Doi: https://doi.org/10.1016/j.apenergy.2015.12.063
- P. Tong, R. Zhao, R. Zhang, F. Yi, G. Shi, A. Li, and H. Chen, Cast and 3D printed ion exchang membranes for monolithic microbial fuel cell fabrication, Journal of Power Sources, 289, 91 (2015). Doi: https://doi.org/10.1016/j.jpowsour.2015.04.113
- B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, and Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery, Journal of Power Sources, 270, 332 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2014.07.145
- Y. Yuan, C. Sun, M. Li, S. S. Choi, and Q. Li, Determination of optimal supercapacitor-lead-acid battery energy storage capacity for smoothing wind power using empirical mode decomposition and neural network, Electric Power Systems Research, 127, 323 (2015). Doi: https://doi.org/10.1016/j.epsr.2015.06.015
- X. Lang, D. Wnag, and J. Zhu, Modified titanium foil's surface by high temperature carbon sintering method as the substrate for bipolar lead-acid battery, Journal of Power Sources, 272, 176 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2014.08.072
- M. Saakes, C. Kleijnen, D. Schmal, and P. T. Have, Advanced bipolar lead-acid battery for hybrid electric vehicles, Journal of Power Sources, 95, 68 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00609-1
- Y. Sun, H. Jou, and J. Wu, Proc. 8th Int. Conf. on Intelligent Systems Design and Applications (ISDA), p. 362, IEEE, Kaohsiung, Taiwan (2008).
- A. Delaille, M. Perrin, F. Huet, and L. Hernout, Study of the "coup de fouet" of lead-acid cells as a function of their state-of-change and state-of-health, Journal of Power Sources, 158, 1019 (2006). Doi: https://doi.org/10.1016/j.jpowsour.2005.11.015
- S. Zhong, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Evaluation of lead-calcium-tin-aluminium grid alloys for valve-regulated lead/acid batteries, Journal of Power Sources, 59, 123 (1996). Doi: https://doi.org/10.1016/0378-7753(95)02312-7
- D. Berndt, Valve-regulated lead-acid batteries, Journal of Power Sources, 95, 2 (2001). Doi: https://doi.org/10.1016/S0378-7753(00)00634-0
- S. Oh, Ph. D. Thesis, pp. 5 - 12, Chonnam National University, Gwangju (2001).
- S. Zhong, J. Wang, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Influence of alloying with bismuth on electrochemical behaviour of lead-calcium-tin grid alloys, Journal of Power Sources 66, 107 (1997). Doi: https://doi.org/10.1016/S0378-7753(96)02535-9
- S. Zhong, J. Wang, H. K. Liu, S. X. Dou, and M. Skyllas-Kazacos, Influence of bismuth on hydrogen and oxygen evolution on lead-calcium-tin-aluminium grid alloys, Journal of Power Sources 66, 159 (1997). Doi: https://doi.org/10.1016/S0378-7753(96)02478-0
- S. Oh and H. Choe, Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface, Journal of the Korean Institute of Surface Engineering, 40, 225 (2007). Doi: https://doi.org/10.5695/JKISE.2007.40.5.225
- E. M. Lehockeya, D. Limogesa, G. Palumboa, J. Sklarchukb, K. Tomantschgerb, and A. Vinczeb, On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering, Journal of Power Sources, 78, 79 (1999). Doi: https://doi.org/10.1016/S0378-7753(99)00015-4
- R. E. Sanders Jr., Continuous castiong for aluminum sheet: a product perspective, Journal of Metals, 64, 291 (2012). Doi: https://doi.org/10.1007/s11837-012-0247-y
- W. Szczypiorski and D. Hazelett, Proc. ALCASTEK 2008, Mumbai, India (2008).
- J. Byers, Annual TMS Meeting (G.W. Warren), TMS, Las Vegas, NV (1995).
- L. C. Peixoto, W. R. Osorio, and A. Garcia, Microstructure and electrochemical corrosion behavior of a Pb1wt%Sn alloy for lead-acid battery components, Journal of Power Sources, 192, 724 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2009.02.081
- D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-I. Corrosion processes and anodic dissolution of antimony, Electrochimica Acta, 36, 2081 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85213-Q
- D. Pavlov, M. Bojinov, T. Laitinen, and G. Sundholm, Electrochemical behaviour of the antimony electrode in sulphuric acid solutions-II. Formation and properties of the primary anodic layer, Electrochimica Acta, 36, 2087 (1991). Doi: https://doi.org/10.1016/0013-4686(91)85214-R
- M. Pourbaix, Atlas of Electrochemical Equilibria, pp. 485 - 492, Pergamon Press (1966).
- P. Jones and H.R. Thirsk, An electrochemical and structural investigation of the processes occurring at silver anodes in sulphuric acid, Transactions of the Faraday Society, 50, 732 (1954). https://pubs.rsc.org/en/content/articlelanding/1954/tf/tf9545000732 https://doi.org/10.1039/TF9545000732
- J. J. McGinnity and M. J. Nicol, The role of silver in enhancing the electrochemical activity of lead and lead-silver alloy anodes, Hydrometallurgy 144-145, 133 (2014). Doi: https://doi.org/10.1016/j.hydromet.2014.02.005
- Y. Yamamoto, K. Fumino, T. Ueda, and M. Nambu, A potentiodynamic study of the lead electrode in sulphuric acid solution, Electrochimica Acta 37, 199 (1992). Doi: https://doi.org/10.1016/0013-4686(92)85003-4