DOI QR코드

DOI QR Code

De-icing of the hydrophobic treated nanoporous anodic aluminum oxide layer

소수성 처리된 나노다공성 알루미늄 양극산화피막의 제빙

  • Shin, Yeji (Department of Metallurgical Engineering, Pukyong National University) ;
  • Kim, Jinhui (Department of Metallurgical Engineering, Pukyong National University) ;
  • Shin, Dongmin (Department of Metallurgical Engineering, Pukyong National University) ;
  • Moon, Hyung-Seok (Energy Plant Group, Korea Institute of Industrial Technology) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
  • 신예지 (부경대학교 금속공학과) ;
  • 김진휘 (부경대학교 금속공학과) ;
  • 신동민 (부경대학교 금속공학과) ;
  • 문형석 (한국생산기술연구원) ;
  • 이정훈 (부경대학교 금속공학과)
  • Received : 2021.10.01
  • Accepted : 2021.10.27
  • Published : 2021.10.31

Abstract

Icing causes various serious problems, where water vapor or water droplets adhere at cold conditions. Therefore, understanding of ice adhesion on solid surface and technology to reduce de-icing force are essential for surface finishing of metallic materials used in extreme environments and aircrafts. In this study, we controlled wettability of aluminum alloy using anodic oxidation, hydrophobic coating and lubricant-impregnation. In addition, surface porosity of anodized oxide layer was controlled to realize superhydrophilicity and superhydrophobicity. Then, de-icing force on these surfaces with a wide range of wettability and mobility of water was measured. The results show that the enhanced wettability of hydrophilic surface causes strong adhesion of ice. The hydrophobic coating on the nanoporous anodic oxide layer reduces the adhesion of ice, but the volume expansion of water during the freezing diminishes the effect. The lubricant-impregnated surface shows an extremely low adhesion of ice, since the lubricant inhibits the direct contact between ice and solid surface.

Keywords

Acknowledgement

이 논문은 2018 년도 과학기술정보통신부의 재원으로 한국연구재단의 지원 (No. 2018R1C1B6006156) 및 산업통상자원부, 공공기관연계지역육성사업 (경남, P0004798)의 지원을 받아 수행된 연구 결과임.

References

  1. 이정훈, 한국표면공학회지, 51 (2018) 11-20. https://doi.org/10.5695/JKISE.2018.51.1.11
  2. 강민주, 이종훈, 차수진, 신예지, 김동현, 김경자, 이정훈, 한국표면공학회지, 54 (2021) 90-95. https://doi.org/10.5695/JKISE.2021.54.2.90
  3. L. Zhu, J. Xu, Z. Zhang, D. W. Hess, C. Wong, IEEE (2005) 1798-1801.
  4. A. Cassie, S. Baxter, Transactions of the Faraday society 40, (1944) 546-551. https://doi.org/10.1039/TF9444000546
  5. L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Langmuir 25, (2009) 12444-12448. https://doi.org/10.1021/la902882b
  6. M. A. Sarshar, D. Song, C. Swarctz, J. Lee, C.-H. Choi, Langmuir 34, (2018) 13821-13827. https://doi.org/10.1021/acs.langmuir.8b02231
  7. J. Lee, S. Shin, Y. Jiang, C. Jeong, H. A. Stone, C. H. Choi, Advanced Functional Materials 27, (2017) 1606040. https://doi.org/10.1002/adfm.201606040
  8. C. Jeong, C.-H. Choi, ACS Applied Materials 4, (2012) 842-848. https://doi.org/10.1021/am201514n
  9. J. Joo, D. Kim, H.-S. Moon, K. Kim, J. Lee, Applied Surface Science 509, (2020) 145361. https://doi.org/10.1016/j.apsusc.2020.145361
  10. 주재훈, 김동현, 정찬영, 이정훈, 한국표면공학회지 52, (2019) 96-102. https://doi.org/10.5695/JKISE.2019.52.2.96
  11. Wenzel, Robert, The Journal of Physical Chemistry 53, (1949) 1466-1467. https://doi.org/10.1021/j150474a015
  12. H. Y. Erbil, C. E. Cansoy, Langmuir 25, (2009) 14135-14145. https://doi.org/10.1021/la902098a
  13. J. Joo, M. Kang, H.-S. Moon, S. Wooh, J. Lee, Surface and Coatings Technology 404, (2020) 126595. https://doi.org/10.1016/j.surfcoat.2020.126595
  14. S. Wooh, N. Encinas, D. Vollmer, H. J. Butt, Advanced Materials 29, (2017) 1604637. https://doi.org/10.1002/adma.201604637
  15. L. Chen, S. Park, J. Yoo, H. Hwang, H. Kim, J. Lee, J. Hong, S. Wooh, Advanced Materials Interfaces 7, (2020) 2000305. https://doi.org/10.1002/admi.202000305