DOI QR코드

DOI QR Code

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding

고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성

  • Yeo, Ki-Ho (Department of Metallurgical and Materials Engineering, Hanyang University) ;
  • Park, Eun-Soo (R&D Center, Eloi MaterialL(EML)) ;
  • Lee, Han-Chan (R&D Center, Eloi MaterialL(EML))
  • Received : 2021.10.29
  • Accepted : 2021.10.30
  • Published : 2021.10.31

Abstract

High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 한국산업기술평가관리원 전자부품산업기술개발-디스플레이혁신공정플랫폼구축사업의 일환으로 수행하였음[20016359, 곡률 반경 1.0mm 폴더블 디스플레이용 경량 힌지모듈 소재 및 제조기술 개발].

References

  1. ShunyuLiuYung C.Shin, Additive manufacturing of Ti6Al4V alloy, A review, Materials & Design 164 (2019) 1-23
  2. Dmitri V.Louzguine, Hidemi Kato, Akihisa Inoue, High strength and ductile binary Ti-Fe composite alloy, Journal of Alloys and Compounds, 384 (2004) L1-L3 https://doi.org/10.1016/j.jallcom.2004.03.114
  3. HongqiLi, Fereshteh Ebrahimi, Tensile behavior of a nanocrystalline Ni-Fe alloy, Acta Materialia, 54, (2006) 2877-2886 https://doi.org/10.1016/j.actamat.2006.02.033
  4. A.Upadhyaya, S.K.Tiwari, P.Mishra, Microwave sintering of W-Ni-Fe alloy, Scripta Materialia, 56 (2007) 5-8 https://doi.org/10.1016/j.scriptamat.2006.09.010
  5. Y.H.Zhao, X.Z.Liao, Z.Jin, R.Z.Valiev, Y.T.Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Materialia, 52 (2004) 4589-4599 https://doi.org/10.1016/j.actamat.2004.06.017
  6. Huang KH, Yeh JW. A study on multicomponent alloy systems containing equal-mole elements, M.S. thesis. Hsinchu: National Tsing Hua University (1996)
  7. J. W. Yeh, JOM., Alloy Design Strategies and Future Trends in High-Entropy Alloys, Metals & Materials Society 65 (2013) 1759-1771 https://doi.org/10.1007/s11837-013-0761-6
  8. J. W. Yeh, S. -K. Chen, S. -J. Lin, J. -Y. Gan, T. -S. Chin, T. -T. Shun, C. -H. Tsau, and S. -Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299 https://doi.org/10.1002/adem.200300567
  9. Easo P. George, Dierk Raabe & Robert O. Ritchie, High-entropy alloys, Nature Reviews Materials, 4 (2019) 515-534 https://doi.org/10.1038/s41578-019-0121-4
  10. K.-Y.Tsai, M.-H.Tsai, J.-W.Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897 https://doi.org/10.1016/j.actamat.2013.04.058
  11. Chuan Zhang, Fan Zhang, Haoyan Diao, Michael C.Gao, Zhi Tang, Jonathan D.Poplawsky, Peter K.Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433 https://doi.org/10.1016/j.matdes.2016.07.073
  12. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater., 6 (2004) 299-303 https://doi.org/10.1002/adem.200300567
  13. Yeh JW., Recent progress in high-entropy alloys., Ann Chim-Sci Mat. 31 (2006) 633-648 https://doi.org/10.3166/acsm.31.633-648
  14. J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang and H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear, 261 (2006) 513-519 https://doi.org/10.1016/j.wear.2005.12.008
  15. Y.H. Jo, S. Jung, W.M. Choi, S.S. Sohn, H.S. Kim, B.J. Lee, N.J. Kim and S. Lee, Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high-entropy alloy powders, Nat. Commun., 708 (2017) 291-300
  16. O.N. Senkov, G.B. Wilks, J.M. Scott and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011) 698706
  17. J. Shi, C. M. Muders, A. Kumar, X. Jiang, and Z. L. Pei, J. Gong, C. Sun, Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating, Appl. Surf. Sci., 258 (2012) 9642-9649 https://doi.org/10.1016/j.apsusc.2012.06.002
  18. J. Shi, A. Kumar, L. Zhang, X. Jiang, Z. L. Pei, J. Gong, and C. Sun, Effect of Cu addition on properties of Ti-Al-Si-N nanocomposite films deposited by cathodic vacuum arc ion plating, Surf. Coat. Technol., 206 (2012) 2947-2953 https://doi.org/10.1016/j.surfcoat.2011.12.027
  19. Z. G. Yuan, L. Sun, W. B. Gong, Z. L. Xu, and X. Wu, Synthesis and mechanical properties of Mo-Al-Si-N films deposited by direct current magnetron sputtering, Thin Solid Films, 603 (2016) 75-79 https://doi.org/10.1016/j.tsf.2016.01.053
  20. Junchen Li, Yongxian Huang, Xiangchen Meng, and Yuming Xie, A Review on High Entropy Alloys Coatings: FabricationProcesses and Property Assessment, Adv. Eng. Mater. 21 (2019) 1-27
  21. Yunzhu Shi, Bin Yang and Peter K. Liaw, Corrosion-Resistant High-Entropy Alloys: A Review, metals, 7(2) (2017) 1-18
  22. J. Musil, Hard and superhard nanocomposite coatings: Surface and Coatings Technology, 125(1-3) (2000) 322-330 https://doi.org/10.1016/S0257-8972(99)00586-1
  23. Stan Veprek, Maritza J.G, Veprek-Heijman, Industrial applications of superhard nanocomposite coatings: Surface and Coatings Technology, 202(21) (2008) 5063-5073 https://doi.org/10.1016/j.surfcoat.2008.05.038
  24. Han-Chan Lee, Kyoung-Il Moon, Paik-Kyun Shin, MoN-Cu Thin Films Deposited by Magnetron Sputtering with Single Alloying Target: Inst. Surf. Eng. 49(4) (2016) 368-375 https://doi.org/10.5695/JKISE.2016.49.4.368
  25. Han-Chan Lee, Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties: J. Korean Inst. Electr. Electron. Mater. Eng. 29(10) (2016) 665-670 https://doi.org/10.4313/JKEM.2016.29.10.665
  26. Wei Li, Ping Liu & Peter K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: a review: Materials Research Letters. 6(4) (2018) 199-229 https://doi.org/10.1080/21663831.2018.1434248
  27. Ming-Hung Tsai & Jien-Wei Yeh, High-Entropy Alloys: A Critical Review: Materials Research Letters. 2(3) (2014) 107-123 https://doi.org/10.1080/21663831.2014.912690