DOI QR코드

DOI QR Code

Review on Membranes Containing Silver Nanoparticles with Antibacterial and Antifouling Properties

항균 및 방오 특성을 가진 은나노 입자 함유 분리막에 대한 총설

  • Kim, HanSol (Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김한솔 (연세대학교 언더우드학부 융합과학공학부 바이오융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2021.10.11
  • Accepted : 2021.10.21
  • Published : 2021.10.31

Abstract

Separation membranes used in water filtration, protein purification or biomedical filtration device frequently undergo membrane fouling for several reasons. The formation of biofilm on the membrane surface by bacteria causes a severe problem for durability of the membrane. For the protein separation, the membrane pores get blocked due to surface hydrophobicity of the membrane. There are several approaches controlling the membrane fouling and one of them is the incorporation of silver nanoparticles. Antibacterial properties of silver nanoparticles are well known and thus widely used in several applications. In this review, we have focused on the membranes where silver nanoparticles or its derivatives are either incorporated in the active layer of thin film composite membranes or uniformly distributed throughout the whole membranes.

물 여과, 단백질 정제 또는 생체 의학 여과 장치에 사용되는 분리막은 여러 가지 이유로 막 파울링을 거치게 된다. 박테리아에 의한 막 표면의 바이오필름 형성은 분리막의 내구성에 심각한 문제를 초래한다. 단백질 정제의 경우, 소수성인 막의 표면으로 인해 막의 기공이 막히게 된다. 분리막의 파울링을 조절하는 방법에는 여러 가지가 있는데, 그 중 하나가 은나노 입자의 도입이다. 은나노 입자의 항균 특성은 잘 알려져 있고 따라서 여러 응용에 사용되고 있다. 본 총설에서는 은나노 입자 또는 그 유도체가 박막 활성층에 도입되거나 또는 복합막 전체에 균일하게 분포된 분리막에 초점을 두었다.

Keywords

References

  1. D. L. Zhao and T. S. Chung, "Applications of carbon quantum dots (CQDs) in membrane technologies: A review", Water Res., 147, 43 (2018). https://doi.org/10.1016/j.watres.2018.09.040
  2. K. T. Yeong and R. J. Won, "Confirmation of the fouling phenomena in cdi process and the establishment of its removal process conditions", Membr. J., 29, 276 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.5.276
  3. D. L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko, and T. S. Chung, "Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review", Water Res., 173, 115557 (2020). https://doi.org/10.1016/j.watres.2020.115557
  4. Z. Y. Huo, Y. Du, Z. Chen, Y. H. Wu, and H. Y. Hu, "Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review", Water Res., 173, 115581 (2020). https://doi.org/10.1016/j.watres.2020.115581
  5. A. Kazuki, N. Ryo, and N. Shin-ichi, "Fouling mechanism of microfiltration/ultrafiltration by macromolecules and a suppression strategy from the viewpoint of the hydration structure at the membrane surface", Membr. J., 30, 205 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.4.205
  6. C. Zhang, Z. Hu, P. Li, and S. Gajaraj, "Governing factors affecting the impacts of silver nanoparticles on wastewater treatment", Sci. Total Environ., 572, 852 (2016). https://doi.org/10.1016/j.scitotenv.2016.07.145
  7. C. T. Hwan and P. H. Bum, "Membrane and virus filter trends in the processes of biopharmaceutical production", Membr. J., 30, 9 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.9
  8. M. R. Esfahani, S. A. Aktij, Z. Dabaghian, M. D. Firouzjaei, A. Rahimpour, J. Eke, I. C. Escobar, M. Abolhassani, L. F. Greenlee, A. R. Esfahani, A. Sadmani, and N. Koutahzadeh, "Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications", Sep. Purif. Technol., 213, 465 (2019). https://doi.org/10.1016/j.seppur.2018.12.050
  9. G. Lofrano, M. Carotenuto, G. Libralato, R. F. Domingos, A. Markus, L. Dini, R. K. Gautam, D. Baldantoni, M. Rossi, S. K. Sharma, M. C. Chattopadhyaya, M. Giugni, and S. Meric, "Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview", Water Res., 92, 22 (2016). https://doi.org/10.1016/j.watres.2016.01.033
  10. M. Kumar, M. A. Khan, and H. A. Arafat, "Recent developments in the rational fabrication of thin film nanocomposite membranes for water purification and desalination", ACS Omega, 5, 3792 (2020). https://doi.org/10.1021/acsomega.9b03975
  11. L. H. Kae, D. H. T. Thanh, K. W. Seok, and K. Y. Nam, "Review on changes in surface properties and performance of polyamide membranes when exposed to acidic solutions", Membr. J., 30, 283 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.283
  12. K. D. Woo, "Review on graphene oxide-based nanofiltration membrane", Membr. J., 29, 130 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.130
  13. C. Zhang, Z. Hu, and B. Deng, "Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms", Water Res., 88, 403 (2016). https://doi.org/10.1016/j.watres.2015.10.025
  14. J. Lalley, D. D. Dionysiou, R. S. Varma, S. Shankara, D. J. Yang, and M. N. Nadagouda, "Silver-based antibacterial surfaces for drinking water disinfection - An overview", Curr. Opin. Chem. Eng., 3, 25 (2014). https://doi.org/10.1016/j.coche.2013.09.004
  15. A. M. F. Linhares, R. L. Grando, C. P. Borges, and F. V. da Fonseca, "Technological prospection on membranes containing silver nanoparticles for water disinfection", Recent Pat. Nanotechnol., 12, 3 (2018). https://doi.org/10.2174/1872210511666170920144342
  16. D. Kharaghani, Y. Kee Jo, M. Q. Khan, Y. Jeong, H. J. Cha, and I. S. Kim, "Electrospun antibacterial polyacrylonitrile nanofiber membranes functionalized with silver nanoparticles by a facile wetting method", Eur. Polym. J., 108, 69 (2018). https://doi.org/10.1016/j.eurpolymj.2018.08.021
  17. K. Maziya, B. C. Dlamini, and S. P. Malinga, "Hyperbranched polymer nanofibrous membrane grafted with silver nanoparticles for dual antifouling and antibacterial properties against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa", React. Funct. Polym., 148, 104494 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104494
  18. L. Qi, Z. Liu, N. Wang, and Y. Hu, "Facile and efficient in situ synthesis of silver nanoparticles on diverse filtration membrane surfaces for antimicrobial performance", Appl. Surf. Sci., 456, 95 (2018). https://doi.org/10.1016/j.apsusc.2018.06.066
  19. S. Rana, U. Nazar, J. Ali, Q. U. A. Ali, N. M. Ahmad, F. Sarwar, H. Waseem, and S. U. U. Jamil, "Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes", Environ. Technol., 39, 1413 (2018). https://doi.org/10.1080/09593330.2017.1330900
  20. R. Reis, L. F. Dumee, L. He, F. She, J. D. Orbell, B. Winther-Jensen, and M. C. Duke, "Amine enrichment of thin-film composite membranes via low pressure plasma polymerization for antimicrobial adhesion", ACS Appl. Mater. Interfaces, 7, 14644 (2015). https://doi.org/10.1021/acsami.5b01603
  21. K. P. Wai, C. H. Koo, Y. L. Pang, W. C. Chong, and W. J. Lau, "In situ immobilization of silver on polydopamine-coated composite membrane for enhanced antibacterial properties", J. Water Process Eng., 33, 100989 (2020). https://doi.org/10.1016/j.jwpe.2019.100989
  22. M. Yi, C. H. Lau, S. Xiong, W. Wei, R. Liao, L. Shen, A. Lu, and Y. Wang, "Zwitterion-Ag complexes that simultaneously enhance biofouling resistance and silver binding capability of thin film composite membranes", ACS Appl. Mater. Interfaces, 11, 15698 (2019). https://doi.org/10.1021/acsami.9b02983
  23. F. A. A. Ali, J. Alam, A. K. Shukla, M. Alhoshan, M. A. Ansari, W. A. Al-Masry, S. Rehman, and M. Alam, "Evaluation of antibacterial and antifouling properties of silver-loaded GO polysulfone nanocomposite membrane against Escherichia coli, Staphylococcus aureus, and BSA protein", React. Funct. Polym., 140, 136 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.04.019
  24. X. Huang, Y. Chen, X. Feng, X. Hu, Y. Zhang, and L. Liu, "Incorporation of oleic acid-modified Ag@ZnO core-shell nanoparticles into thin film composite membranes for enhanced antifouling and antibacterial properties", J. Membr. Sci., 602, 117956 (2020). https://doi.org/10.1016/j.memsci.2020.117956
  25. K. Kotlhao, I. A. Lawal, R. M. Moutloali, and M. J. Klink, "Antifouling properties of silver-zinc oxide polyamide thin film composite membrane and rejection of 2-chlorophenol and 2,4-dichlorophenol", Membranes, 9, 96 (2019). https://doi.org/10.3390/membranes9080096
  26. S. Al Aani, A. Haroutounian, C. J. Wright, and N. Hilal, "Thin Film Nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications", Desalination, 427, 60 (2018). https://doi.org/10.1016/j.desal.2017.10.011
  27. W. Wang, Y. Li, W. Wang, B. Gao, and Z. Wang, "Palygorskite/silver nanoparticles incorporated polyamide thin film nanocomposite membranes with enhanced water permeating, antifouling and antimicrobial performance", Chemosphere, 236, 124396 (2019). https://doi.org/10.1016/j.chemosphere.2019.124396
  28. S. Zhang, G. Qiu, Y. P. Ting, and T. S. Chung, "Silver-PEGylated dendrimer nanocomposite coating for anti-fouling thin film composite membranes for water treatment", Colloids Surf. A Physicochem., Eng. Asp. 436, 207 (2013). https://doi.org/10.1016/j.colsurfa.2013.06.027
  29. S. Liu, F. Fang, J. Wu, and K. Zhang, "The antibiofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles", Desalination, 375, 121 (2015). https://doi.org/10.1016/j.desal.2015.08.007
  30. C. Xu, W. Chen, H. Gao, X. Xie, and Y. Chen, "Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties", Environ. Sci. Nano, 7, 803 (2020). https://doi.org/10.1039/C9EN01367A
  31. A. Behboudi, Y. Jafarzadeh, and R. Yegani, "Enhancement of antifouling and antibacterial properties of PVC hollow fiber ultrafiltration membranes using pristine and modified silver nanoparticles", J. Environ. Chem., Eng. 6, 1764 (2018). https://doi.org/10.1016/j.jece.2018.02.031
  32. Z. Yang, H. Guo, Z. K. Yao, Y. Mei, and C. Y. Tang, "Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes", Environ. Sci. Technol., 53, 5301 (2019). https://doi.org/10.1021/acs.est.9b00473