DOI QR코드

DOI QR Code

활성탄에 의한 Brilliant Green과 Quinoline Yellow 염료의 흡착에 대한 등온선, 동력학, 열역학 및 경쟁흡착

Isotherm, Kinetic, Thermodynamic and Competitive for Adsorption of Brilliant Green and Quinoline Yellow Dyes by Activated Carbon

  • 이종집 (공주대학교 화학공학부)
  • Lee, Jong Jib (Division of Chemical Engineering, Kongju National University)
  • 투고 : 2021.06.17
  • 심사 : 2021.07.14
  • 발행 : 2021.11.01

초록

활성탄에 의한 Brilliant Green(BG), Quinoline Yellow(QY) 염료의 흡착에 대한 등온선, 동력학, 열역학적 특성치와 경쟁흡착을 흡착제의 양, pH, 초기농도, 접촉시간 및 온도를 변수로 하여 수행하였다. BG와 QY는 가지고 있는 atomic nitrogen 이온(N+)의 영향으로 pH 11에서 92.4%의 최고 흡착율을 나타내었고, QY는 sulfite 이온(SO3-)의 영향으로 pH3에서 90.9%의 최고 흡착률을 나타냈다. 등온흡착 데이터로부터, BG의 경우는 Freundlich 등온식에 잘 맞아서 다분자층 흡착이었고, QY는 Langmuir 등온식이 가장 높은 일치도를 나타내어 주로 단분자층흡착이었다. Freundlich 식과 Langmuir 식의 분리계수는 활성탄에 의해 이들 염료를 효과적으로 처리할 수 있는 공정임을 나타냈다. Temkin 등온식에 의해 평가된 흡착 에너지는 활성탄에 의한 BG와 QY의 흡착이 물리 흡착임을 확인시켰다. 동력학적 실험결과는 유사 이차 반응속도식이 유사일차 반응속도식보다 일치도가 높았고 평형흡착량에 대한 오차도 더 작았다. 입자내 확산식을 이용하여 도시한 그래프는 2단계의 직선으로 나타났는데 기울기가 낮은 입자내 확산이 율속단계임을 확인하였다. 흡착공정의 활성화 에너지와 엔탈피 변화는 흡착과정이 비교적 수월하게 일어나며 흡열반응임을 나타냈다. 엔트로피 변화는 활성탄에 대한 BG와 QY 염료의 흡착이 진행됨에 따라 흡착시스템의 무질서도가 증가함을 나타냈고, Gibbs 자유 에너지 변화로 부터 흡착반응이 온도가 높아질수록 자발성이 더 커진다는 것을 알았다. 혼합용액의 경쟁흡착 결과는 상대적으로 흡착률이 높은 QY가 BG에 의해 큰 방해를 받아 흡착률이 크게 감소하는 것으로 나타났다.

Isotherms, kinetics and thermodynamic properties for adsorption of Brilliant Green(BG), Quinoline Yellow(QY) dyes by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration, contact time, temperature and competitive. BG showed the highest adsorption rate of 92.4% at pH 11, and QY was adsorbed at 90.9% at pH 3. BG was in good agreement with the Freundlich isothermal model, and QY was well matched with Langmuir model. The separation coefficients of isotherm model indicated that these dyes could be effectively treated by activated carbon. Estimated adsorption energy by Temkin isotherm model indicated that the adsorption of BG and QY by activated carbon is a physical adsorption. The kinetic experimental results showed that the pseudo second order model had a better fit than the pseudo first order model with a smaller in the equilibrium adsorption amount. It was confirmed that surface diffusion was a rate controlling step by the intraparticle diffusion model. The activation energy and enthalpy change of the adsorption process indicated that the adsorption process was a relatively easy endothermic reaction. The entropy change indicated that the disorder of the adsorption system increased as the adsorption of BG and QY dyes to activated carbon proceeded. Gibbs free energy was found that the adsorption reaction became more spontaneous with increasing temperature. As a result of competitive adsorption of the mixed solution, it was found that QY was disturbed by BG and the adsorption reduced.

키워드

참고문헌

  1. Park, H. O., Kim, K. J., Choi, J. Y., Li, F., Wu, Q. and Shin, W. S., "Sequential Biological-Chemical Process for Dyeing Wastewater Treatment," Korean Soc. Environ. Eng., 12, 866-867(2007).
  2. Gupta, V. K. and Ali, I., "Removal of Endosulfan and Methoxychlor from Water on Carbon Slurry," Environ. Sci. Technol., 42, 766-770(2008). https://doi.org/10.1021/es7025032
  3. Lee, J. J., "Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon," Korean Chem. Eng. Res., 58, 458-465(2020).
  4. Lee, J. J., "Study on Adsorption Characteristics of Reactive Red 120 by Coal-Based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters," Appl. Chem. Eng., 31, 164-171 (2020).
  5. Bhattacharyya, K. G. and Sarma, A., "Adsorption Characteristics of the Dye, Brilliant Green, on Neem Leaf Powder," Dye. Pig., 57, 211-222(2003). https://doi.org/10.1016/S0143-7208(03)00009-3
  6. Nandi, B., Goswami, K. A. and Purkait, M. K., "Adsorption Characteristics of Brilliant Green Dye on Kaolin," J. Hazard. Mater., 161, 387-395(2009). https://doi.org/10.1016/j.jhazmat.2008.03.110
  7. Kismir, Y. and Aroguz, A. Z., "Adsorption Characteristics of the Hazardous Dye Brilliant Green on Saklikent Mud," Chem. Eng. J., 172, 199-206(2011). https://doi.org/10.1016/j.cej.2011.05.090
  8. Mane, V. S. and Babu, P. V. V., "Studies on the Adsorption of Brilliant Green Dye from Aqueous Solution onto Low-cost NaOH Treated Saw Dust," Desalination, 273, 321-329(2011). https://doi.org/10.1016/j.desal.2011.01.049
  9. Rehman, M. S. U., Munir, M., Ashfaq, M., Rashid, N., Nazar, M. F., Danish, M. and Han, J. I., "Adsorption of Brilliant Green Dye from Aqueous Solution onto Red Clay," Chem. Eng. J., 228, 54-62(2013). https://doi.org/10.1016/j.cej.2013.04.094
  10. Kumar, R. Barakat, M. A., "Decolourization of Hazardous Brilliant Green from Aqueous Solution Using Binary Oxidized Cactus Fruit Peel," Chem. Eng. J., 226, 377-383(2013). https://doi.org/10.1016/j.cej.2013.04.063
  11. Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., Vlaev, L. T., "Kinetic Study of Brilliant Green Adsorption from Aqueous Solution onto White Rice Husk Ash," J. Coll. Interf. Sci., 409, 112-122(2013). https://doi.org/10.1016/j.jcis.2013.07.052
  12. Mariah, G. K. and Pak, K. S., "Removal of Brilliant Green Dye from Aqueous Solution by Electrocoagulation Using Response Surface Methodology," Materials Today: Proceedings, 20, 488-492(2020). https://doi.org/10.1016/j.matpr.2019.09.175
  13. Qi, C., Chen, H., Xu, C., Xu, Z., Chen, H., Yang, S., Shiyin Li, S., He, H. and Sun, C., "Synthesis and Application of Magnetic Materials-barium Ferrite Nanomaterial as an Effective Microwave Catalyst for Degradation of Brilliant Green," Chemosphere, 260, 127681(2020). https://doi.org/10.1016/j.chemosphere.2020.127681
  14. Gupta, V. K., Mittal, A. and Gajbi, V., "Adsorption and Desorption Studies of a Water Soluble Dye, Quinoline Yellow, using Waste Materials," J. Colloid and Interface, 284, 89-98(2005). https://doi.org/10.1016/j.jcis.2004.09.055
  15. Salem, M. A., Al-Ghonemiy, A. F. and Zaki, A. B., "Photocatalytic Degradation of Allura Red and Quinoline yellow with Polyaniline/TiO2 Nanocomposite," Appl. Catal. B: Environ., 91, 59-66 (2009). https://doi.org/10.1016/j.apcatb.2009.05.027
  16. Zhao, J., Zhang, Y., Wu, K., Chen, J. and Zhou, Y., "Electrochemical Sensor for Hazardous Food Colourant Quinoline Yellow based on Carbon Nanotube-modified Electrode," Food. Chem., 128, 569-572(2011). https://doi.org/10.1016/j.foodchem.2011.03.067
  17. Jain, R., Agarwal, S., Nayak, A. and Shrivastava, M., "Photo-degradation of Hazardous Dye Quinoline Yellow Catalyzed by TiO2", J. Coll. Interf. Sci., 366, 135-140(2012). https://doi.org/10.1016/j.jcis.2011.08.059
  18. Rameshraja, D., Srivastava, V. C., Kushwaha, J. P. and Mall, I. D., "Quinoline Adsorption onto Granular Activated Carbon and Bagasse Fly Ash," Chem. Eng. J., 181-182, 343-351(2012). https://doi.org/10.1016/j.cej.2011.11.090
  19. Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M. and Hameed, B. H., "Mesoporous Carbonaceous Material from Fish Scales as Low-Cost Adsorbent for Reactive Orange 16 Adsorption," J. Taiwan Inst. Chem. Eng., 71, 47-54(2017). https://doi.org/10.1016/j.jtice.2016.12.026
  20. Zuo, L., Song, W., Shi, T., Lv, C., Yao, J., Liu, J. and Weng, Y., "Adsorption of Aniline on Template-Synthesized Porous Carbons," Micropor. Mesopo. Mate., 200, 174-181(2014). https://doi.org/10.1016/j.micromeso.2014.08.036
  21. Saruchi and Kumar, V., "Adsorption Kinetics and Isotherms for the Removal of Rhodamine B Dye and Pb+2 Ions from Aqueous Solutions by a Hybrid Ion-Exchanger," Arabian J. Chem., 12, 316-329(2019). https://doi.org/10.1016/j.arabjc.2016.11.009
  22. Edison, D., Ramesh, K. S., Sivaramkumar, M. S. and Velmurugan, R., "Removal of Acid Violet 19 Dye from Aqueous Solution by Adsorption onto Activated Charcoal and Polyaniline Coated Charcoal," Intl. J. Trend Res. Dev., 3, 22-27(2016).
  23. Lee, J., J, "Analysis on Adsorption Equilibrium, Kinetic and Thermodynamic Parameters for Aniline Blue Using Activated Carbon," Korean Chem. Eng. Res., 57, 679-686(2019). https://doi.org/10.9713/kcer.2019.57.5.679
  24. Kim, Y.-S. and Kim, J.-H., "Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel onto Sylopute," J. Chem. Thermodyn., 130, 104-113(2019). https://doi.org/10.1016/j.jct.2018.10.005
  25. Al-Kadhi, N. S., "The Kinetic and Thermodynamic Study of the Adsorption Lissamine Green B dye by Micro-particle of Wild Plants from Aqueous Solutions," Egypt. J. Aquat. Res., 45, 231-238(2019). https://doi.org/10.1016/j.ejar.2019.05.004
  26. Hamza, W., Dammak, N., Hadjltaief, H. B., Eloussaief, M. and Benzina, M., "Sono-Assisted Adsorption of Cristal Violet Dye onto Tunisian Smectite Clay: Characterization, Kinetics and Adsorption Isotherms," Ecotoxicol. Environ. Safe., 163, 365-371(2019). https://doi.org/10.1016/j.ecoenv.2018.07.021
  27. A, U. I., Abdulraheem, G., Bala, S., Muhammad S. and Abdullahi, M., "Kinetics, Equilibrium and Thermodynamics Sudies of CI Reactive Blue 19 Dye Adsorption on Coconut Shell Based Activated Carbon," Intl. Biodeterior. Biodegradation, 102, 265-273(2015). https://doi.org/10.1016/j.ibiod.2015.04.006
  28. Bayramoglu, G. and Arica, M. Y., "Adsorption of Congo Red Dye by Native Amine and Carboxyl Modified Biomass of Funalia Trogii: Isotherms, Kinetics and Thermodynamics Mechanisms," Korean J. Chem. Eng., 35, 1303-1311(2018). https://doi.org/10.1007/s11814-018-0033-9
  29. Xie, G., Wang, B. and Yan, H., "Study on the Adsorption Thermodynamics of Carbofuran in Soil," J. Anhui Agri. Sci., 34, 4695-4696(2006).
  30. Audrey Murray, A. and Ormeci, B., "Competitive Effects of Humic Acid and Wastewater on Adsorption of Methylene Blue Dye by Activated Carbon and Non-Imprinted Polymers," J. Environ. Sci., 66, 310-317(2018). https://doi.org/10.1016/j.jes.2017.04.029