DOI QR코드

DOI QR Code

Optimum Geometry of Glass Lined HOMEBASE Impeller for Gas-Liquid System of Low Viscosity Liquid

저점도 액 통기 교반용 글라스라이닝 홈베이스 임펠러의 최적 형상

  • Koh, Seung-Tae (Industry-Academy Cooperation Foundation of Dongyang University)
  • 고승태 (동양대학교 산학협력단)
  • Received : 2021.05.28
  • Accepted : 2021.07.01
  • Published : 2021.11.01

Abstract

Glass lined impellers are corrosion resistant to most chemicals, including strong acids, and also have a smooth, non-stick surface, easy to clean and free from impurities in the process. Glass lined home base impeller is a multi-purpose impeller designed to stir a wide viscosity range of liquids from low viscosity fluids to high viscosity fluids, among others, cell culture, yeast culture, and beer fermentation pots, especially used for air-water system breathable stirring. The glass lining for HB impellers, which are simple in structure and competitive in performance, is essential to have upper and lower division in order to make the joint area between the impeller and shaft as small as possible. The upper and lower division of the impeller hardly affects the mixing performance, but the aeration performance. In this study, in order to optimize the shape of the Glass Lining HB impeller, a study was conducted on the effect of the angle between the upper and lower impellers, the clearance between the impellers, and the number of baffles on the aeration power. The optimal shape and baffle plate conditions for the Glass lined HB impeller were derived through the study results that the angle and the clearance between the upper and lower impellers decreased the ration of the power consumption with aeration Pg and that without aeration P0, Pg/P0.

글라스 라이닝 임펠러는 강산을 포함한 대부분의 화학물질들에 대해 내부식성이 있고, 또한 평활하고 눌어붙지 않는 표면을 가지며 세정이 용이하고 프로세스에 불순물들을 유입하지 않는 강점을 갖고 있다. 글라스 라이닝 HOMEBASE 임펠러는 저점도 유체에서 고점도 유체까지 폭넓은 점도 범위의 액체를 교반할 수 있도록 개발된 다목적형 대형 교반 임펠러이나, 그중에서도 세포 배양이나 효모의 배양, 맥주 발효 솥 등은 저점도 액의 통기 교반에 많이 사용하며, 특히 공기-수계의 통기성 교반에 많이 적용한다. 구조가 간단하면서도 성능 면에서 경쟁력을 갖는 HOMEBASE 임펠러에 대한 글라스 라이닝은 제작상 임펠러와 샤프트의 접합 면적을 가능한 한 작게 할 수 있도록 상하 분할이 필수적이다. 임펠러의 상하 분할은 혼합 성능에는 거의 영향을 미치지 않지만, 통기 성능을 저하하였다. 본 연구에서는 Glass Lined HOMEBASE 임펠러 형상의 최적화를 위해, 상·하부로 분할된 임펠러 사이의 장착각도차와 임펠러 사이의 간격 및 방해판의 개수가 통기 동력에 미치는 영향에 관한 연구를 수행하였다. 상·하부로 분할된 임펠러 사이의 장착각도차와 간격이 통기를 할 때의 동력 Pg와 통기가 없을 때의 동력 P0의 비인 Pg/P0를 저하시킨다는 연구 결과를 통해 Glass Lined HOMEBASE 임펠러 최적 형상과 방해판 조건을 도출하였다.

Keywords

Acknowledgement

이 논문은 2020년도 동양대학교 학술연구비의 지원으로 수행되었음.

References

  1. Kato, Y., Hiramatsu, M., Ohtani, S., Yoshida, M. and Shiobara, K., "Development of New Large Paddle (HB Type) Impeller Based on Streak Line Observation," Kagaku Kogaku Ronbunshu, 41, 16-20(2015a). https://doi.org/10.1252/kakoronbunshu.41.16
  2. Kato, Y., Ohtani, S. and Furukawa, H., "Characteristics of Power Consumption and Mixing Time of New Large Paddle (HB Type) Impeller," Kagaku Kogaku Ronbunshu, 41, 276-280(2015b). https://doi.org/10.1252/kakoronbunshu.41.276
  3. Matsuno, M., Suzuki, K., Sato, A., Furukawa, H. and Kato, Y., "Development of Glass lining type HB Impeller," Kagaku Kogaku Ronbunshu, 45, 6-9(2019). https://doi.org/10.1252/kakoronbunshu.45.6
  4. Yang, S. N., Beak, S. W. and Kim, N. K., "Effect of Aeration and Agitation Rates on Pullulan Production," Journal of Korean Institute of Chemical Engineers, 38(4), 556-559(2000).
  5. Lee, H.-S., Jung, J.-H. and Lee, S.-Y., "Effects and Batch Kinetics of Agitation and Aeration on Submerged Cultivation of Ganoderma Iucidum," Korean J. Biotechnol. Bioeng., 16(3), 307-313(2001).
  6. Cho, K. H. and Lee, C. W., "Submerged Culture of Phellinus Linteus in a Stirred Tank Fermenter and an Airlift Fermenter," Journal of Korean Institute of Chemical Engineers, 38(2), 310-315(2000).
  7. Lee, H.-S., Lee, K.-Y., Choi, S.-Y. and Lee, S.-Y., "Effect of Agitation, Aeration and Scale-up on Mycelial Morphology During Liquid Culture of Ganoderma Lucidum," Korean Society for Biotech nology and Bioengineering Jounal, 26, 357-364(2011).
  8. Furukawa H., Oda, E., He, C., Kamei, N., Kato, Y. and Tada, Y., "Power Consumption and Mass Transfer in Gas-Liquid Mixing Vessel with Concave Turbine and Large Ring Sparger," Kagaku Kogaku Ronbunshu, 38(4), 209-211(2012). https://doi.org/10.1252/kakoronbunshu.38.209
  9. Furukawa H., Kamei, N., Kato, Y., He, C., Suzuki, T. and Tada, Y., "Power Consumption in Gas-Liquid Mixing Vessel with Dual Impellers including Concave Turbine and Large Ring Sparger," Kagaku Kogaku Ronbunshu, 39(4), 287-289(2013) https://doi.org/10.1252/kakoronbunshu.39.287
  10. Furukawa H., Kato, Y., Nagumo, R. and Tada, Y., "Correlation of Power Consumption for Concave Turbine Impeller," Kagaku Kogaku Ronbunshu, 41(2), 91-94(2015). https://doi.org/10.1252/kakoronbunshu.41.91
  11. Zhiyong, Z., Dongdong, S., Jing, L., Xiaobei, Z. and Minjie, G., "Improving Oxygen Transfer Efficiency by Developing a Novel Energy-saving Impeller," Chemical Engineering Research and Design, 130, 199-207(2018). https://doi.org/10.1016/j.cherd.2017.12.021
  12. Kamei, N., Kato, Y., Tada, Y., Ando, J. and Nagatsu, Y., "Effects of Sparger Geometry on Power Consumption and Mass Transfer in Gas-Liquid Agitated Vessels with Disk Turbine," J. Chem. Eng. Japan, 42, 664-668(2009). https://doi.org/10.1252/jcej.09we110
  13. Furukawa, H., Matsumoto, K., Kato, Y., Kamiya, M., Haitsuka, M. and Kamei, N., "Mass Transfer of Oxygen and Power Consumption with Highly Viscous Liquid in Gas-Liquid Agitated Vessel," J. Chem. Eng. Res. Updates, 4, 1-6(2017). https://doi.org/10.15377/2409-983X.2017.04.01.1
  14. Kato, Y., Tada, Y., Urano, K., Hattori, M., Nagatsu, Y., Koh, S. T. and Lee, Y. S., "Differences of Power Consumption of Paddle Impellers with Same Blade Area in Turbulent Mixing Vessels," Kagaku Kogaku Ronbunshu, 36, 30-33(2010). https://doi.org/10.1252/kakoronbunshu.36.30
  15. Saito, F., Nienow, A. W., Chatwin, S. and Moore, L. T., "Power, Gas Dispersion and Homogenisation Characteristics of SCABA SRGT Rushton Impellers," J. Chem. Eng. Japan, 25, 281-287(1992). https://doi.org/10.1252/jcej.25.281