Acknowledgement
This work was supported by the grant from National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2010-0024878).
References
- Lecube A, Carrera A, Losada E, Hernandez C, Simo R, Mesa J. Iron deficiency in obese postmenopausal women. Obesity (Silver Spring) 2006; 14(10): 1724-1730. https://doi.org/10.1038/oby.2006.198
- Moayeri H, Bidad K, Zadhoush S, Gholami N, Anari S. Increasing prevalence of iron deficiency in overweight and obese children and adolescents (Tehran Adolescent Obesity Study). Eur J Pediatr 2006; 165(11): 813-814. https://doi.org/10.1007/s00431-006-0178-0
- Amato A, Santoro N, Calabro P, Grandone A, Swinkels DW, Perrone L, et al. Effect of body mass index reduction on serum hepcidin levels and iron status in obese children. Int J Obes 2010; 34(12): 1772-1774. https://doi.org/10.1038/ijo.2010.204
- Chung J, Kim MS, Han SN. Diet-induced obesity leads to decreased hepatic iron storage in mice. Nutr Res 2011; 31(12): 915-921. https://doi.org/10.1016/j.nutres.2011.09.014
- Park CY, Chung J, Koo KO, Kim MS, Han SN. Hepatic iron storage is related to body adiposity and hepatic inflammation. Nutr Metab (Lond) 2017; 14: 14. https://doi.org/10.1186/s12986-017-0169-3
- Chung H, Wu D, Smith D, Meydani SN, Han SN. Lower hepatic iron storage associated with obesity in mice can be restored by decreasing body fat mass through feeding a low-fat diet. Nutr Res 2016; 36(9): 955-963. https://doi.org/10.1016/j.nutres.2016.06.003
- Sandstrom B. Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr 2001; 85 Suppl 2: S181-S185. https://doi.org/10.1079/BJN2000312
- Anderson GJ, Frazer DM, McLaren GD. Iron absorption and metabolism. Curr Opin Gastroenterol 2009; 25(2): 129-135. https://doi.org/10.1097/MOG.0b013e32831ef1f7
- Collins JF, Prohaska JR, Knutson MD. Metabolic crossroads of iron and copper. Nutr Rev 2010; 68(3): 133-147. https://doi.org/10.1111/j.1753-4887.2010.00271.x
- Solomons NW, Jacob RA. Studies on the bioavailability of zinc in humans: effects of heme and nonheme iron on the absorption of zinc. Am J Clin Nutr 1981; 34(4): 475-482. https://doi.org/10.1093/ajcn/34.4.475
- Haschke F, Ziegler EE, Edwards BB, Fomon SJ. Effect of iron fortification of infant formula on trace mineral absorption. J Pediatr Gastroenterol Nutr 1986; 5(5): 768-773. https://doi.org/10.1097/00005176-198609000-00018
- Kennedy ML, Failla ML, Smith JC Jr. Influence of genetic obesity on tissue concentrations of zinc, copper, manganese and iron in mice. J Nutr 1986; 116(8): 1432-1441. https://doi.org/10.1093/jn/116.8.1432
- Pasman WJ, Heimerikx J, Rubingh CM, van den Berg R, O'Shea M, Gambelli L, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis 2008; 7: 10. https://doi.org/10.1186/1476-511X-7-10
- Park S, Lim Y, Shin S, Han SN. Impact of Korean pine nut oil on weight gain and immune responses in high-fat diet-induced obese mice. Nutr Res Pract 2013; 7(5): 352-358. https://doi.org/10.4162/nrp.2013.7.5.352
- Le NH, Shin S, Tu TH, Kim CS, Kang JH, Tsuyoshi G, et al. Diet enriched with korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity. J Agric Food Chem 2012; 60(48): 11935-11941. https://doi.org/10.1021/jf303548k
- Zhu S, Park S, Lim Y, Shin S, Han SN. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice. Nutr Res Pract 2016; 10(5): 477-486. https://doi.org/10.4162/nrp.2016.10.5.477
- Park S, Shin S, Lim Y, Shin JH, Seong JK, Han SN. Korean pine nut oil attenuated hepatic triacylglycerol accumulation in high-fat diet-induced obese mice. Nutrients 2016; 8(1): 59. https://doi.org/10.3390/nu8010059
- Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26(1): 323-342. https://doi.org/10.1146/annurev.nutr.26.061505.111303
- Ouchi N, Ohashi K, Shibata R, Murohara T. Adipocytokines and obesity-linked disorders. Nagoya J Med Sci 2012; 74(1-2): 19-30.
- McClung JP, Karl JP. Iron deficiency and obesity: the contribution of inflammation and diminished iron absorption. Nutr Rev 2009; 67(2): 100-104. https://doi.org/10.1111/j.1753-4887.2008.00145.x
- Sonnweber T, Ress C, Nairz M, Theurl I, Schroll A, Murphy AT, et al. High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem 2012; 23(12): 1600-1608. https://doi.org/10.1016/j.jnutbio.2011.10.013
- Steele TM, Frazer DM, Anderson GJ. Systemic regulation of intestinal iron absorption. IUBMB Life 2005; 57(7): 499-503. https://doi.org/10.1080/15216540500149904
- Kuo YM, Su T, Chen H, Attieh Z, Syed BA, McKie AT, et al. Mislocalisation of hephaestin, a multicopper ferroxidase involved in basolateral intestinal iron transport, in the sex linked anaemia mouse. Gut 2004; 53(2): 201-206. https://doi.org/10.1136/gut.2003.019026
- Arredondo M, Munoz P, Mura CV, Nunez MT. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol 2003; 284(6): C1525-C1530. https://doi.org/10.1152/ajpcell.00480.2002
- Espinoza A, Le Blanc S, Olivares M, Pizarro F, Ruz M, Arredondo M. Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA. Biol Trace Elem Res 2012; 146(2): 281-286. https://doi.org/10.1007/s12011-011-9243-2
- Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr 2004; 24(1): 151-172. https://doi.org/10.1146/annurev.nutr.24.012003.132402
- Wyman S, Simpson RJ, McKie AT, Sharp PA. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 2008; 582(13): 1901-1906. https://doi.org/10.1016/j.febslet.2008.05.010
- Dupic F, Fruchon S, Bensaid M, Loreal O, Brissot P, Borot N, et al. Duodenal mRNA expression of iron related genes in response to iron loading and iron deficiency in four strains of mice. Gut 2002; 51(5): 648-653. https://doi.org/10.1136/gut.51.5.648
- Frazer DM, Wilkins SJ, Becker EM, Murphy TL, Vulpe CD, McKie AT, et al. A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut 2003; 52(3): 340-346. https://doi.org/10.1136/gut.52.3.340