DOI QR코드

DOI QR Code

복합 밀링 공정으로 제조된 산화물 분산 강화 강의 미세조직 및 고온 기계적 특성

Microstructure and High Temperature Mechanical Properties of Oxide Dispersion Strengthened Steels Manufactured by Combination Milling Process

  • 이정욱 (인하대학교 신소재공학과) ;
  • 김영균 (인하대학교 신소재공학과) ;
  • 김정한 (국립 한밭대학교 신소재공학과) ;
  • 김휘준 (한국생산기술연구원) ;
  • 이기안 (인하대학교 신소재공학과)
  • Lee, Jung-Uk (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Young-Kyun (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Jeoung Han (Department of Materials Science and Engineering, Hanbat National University) ;
  • Kim, Hwi-Jin (Korea Institute of Industrial Technology) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • 투고 : 2021.08.23
  • 심사 : 2021.09.22
  • 발행 : 2021.10.28

초록

Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900℃, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.

키워드

참고문헌

  1. H. Oka, T. Tanno, Y. Yano, S. Ohtsuka, T. Kaito and Y. Tachi: J. Nucl. Mater., 547 (2021) 152833. https://doi.org/10.1016/j.jnucmat.2021.152833
  2. M. J. Alinger, G. R. Odette and D. T. Hoelzer: Acta Mater., 57 (2009) 392. https://doi.org/10.1016/j.actamat.2008.09.025
  3. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu and M. W. Chen: Nat. Mater., 23 (2011) 1.
  4. Y. K. Kim, J. K. Park and K. A Lee: J. Korean Powder Metall. Inst., 25 (2018) 36. https://doi.org/10.4150/KPMI.2018.25.1.36
  5. Y. Hwang, T. K. Lee and B. K. Park: Korean J. Crystallography, 10 (1999) 145.
  6. M. J. Alinger, G. R. Odette and D. T. Hoelzer: Acta Mater., 57 (2009) 392. https://doi.org/10.1016/j.actamat.2008.09.025
  7. X. Mao, T. K. Kim, S. S. Kim, K. H. Oh and J. Jang: J. Nucl. Mater., 428 (2012) 82. https://doi.org/10.1016/j.jnucmat.2011.09.011
  8. Q. Zhao, L. Yu, Y. Liu and H. Li: Adv. Powder Technol., 26 (2015) 1578. https://doi.org/10.1016/j.apt.2015.08.017
  9. J. H. Kim, T. S. Byun, D. T. Hoelzer, C. H. Park, J. T. Yeom and J. K. Hong: Mater. Sci. Eng. A, 559 (2013) 111. https://doi.org/10.1016/j.msea.2012.08.041
  10. J. H. Gwon, J. H. Kim and K. A. Lee: J. Nucl. Mater., 459 (2015) 205. https://doi.org/10.1016/j.jnucmat.2015.01.032
  11. J. H. Kim, T. S. Byun, J. H. Lee, J. Y. Min, S. W. Kim, C. H. Park and B. H. Lee: J. Nucl. Mater., 449 (2014) 300. https://doi.org/10.1016/j.jnucmat.2013.09.043
  12. X. K. Zhu, X. Zhang, H. Wang, A. V. Sergueeva, A. K. Mukherjee, R. O. Scattergood, J. Narayan and C. C. Koch: Scr. Mater., 49 (2003) 429. https://doi.org/10.1016/S1359-6462(03)00297-5
  13. C. S. Tiwary, A. Verma, S. Kashyp, K. Biswas and K. Chattopadhyay: Metall. Mater. Trans. A, 44 (2013) 1917. https://doi.org/10.1007/s11661-012-1508-7
  14. Y. K. Kim, J. H. Kim, J. H Gwon and K. A. Lee: Arch. Metall. Mater., 62 (2017) 1335. https://doi.org/10.1515/amm-2017-0204
  15. M. Dade, J. Malaplate, J. Garnier, F. D. Geuser, N. Lochet and A. Deschamps: J. Nucl. Mater., 472 (2016) 143. https://doi.org/10.1016/j.jnucmat.2016.01.019
  16. H. K. D. H. Bhadeshia: Mater. Sci. Eng. A, 223 (1997) 64. https://doi.org/10.1016/S0921-5093(96)10507-4
  17. R. Husak, H. Hadraba, Z. Chlup, M. Heczko, T. Kruml and V. Puchy: Metals, 9 (2019) 1148. https://doi.org/10.3390/met9111148
  18. J. B. Seol, K. M. Kim and J. H. Kim: Korean J. Met. Mater., 54 (2015) 171. https://doi.org/10.3365/kjmm.2016.54.3.171
  19. M. A. Auger, V. de Castro, T. Leguey, M. A. Monge, A. Munoz and R. Pareja: J. Nucl. Mater., 442 (2013) S142. https://doi.org/10.1016/j.jnucmat.2012.11.001
  20. Y. K. Kim, Y. A. Joo, J. K. Park, H. J. Kim, M. S. Kong and K. A. Lee: Korean J. Met. Mater., 55 (2017) 862. https://doi.org/10.3365/KJMM.2017.55.12.862
  21. W. Han, K. Yabuuchi, A. Kimura, S. Ukai, N. Oono, T. Kaito, T. Torimaru and S. Hayashi: Nucl. Mater. Energy, 9 (2016) 610. https://doi.org/10.1016/j.nme.2016.05.015