DOI QR코드

DOI QR Code

실리콘 절삭 슬러지를 이용한 TiO2 코팅 나노 실리콘 입자의 제조

Fabrication of TiO2 Coated Si Nano Particle using Silicon Sawing Sludge

  • 서동혁 (단국대학교 에너지공학과) ;
  • 임현민 (단국대학교 에너지공학과) ;
  • 나호윤 (단국대학교 에너지공학과) ;
  • 김원진 (단국대학교 에너지공학과) ;
  • 김륜나 (단국대학교 에너지공학과) ;
  • 김우병 (단국대학교 에너지공학과)
  • Seo, Dong Hyeok (Department of Energy Engineering, Dankook University) ;
  • Yim, Hyeon Min (Department of Energy Engineering, Dankook University) ;
  • Na, Ho Yoon (Department of Energy Engineering, Dankook University) ;
  • Kim, Won Jin (Department of Energy Engineering, Dankook University) ;
  • Kim, Ryun Na (Department of Energy Engineering, Dankook University) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 투고 : 2021.10.05
  • 심사 : 2021.10.08
  • 발행 : 2021.10.28

초록

Here, we report the development of a new and low-cost core-shell structure for lithium-ion battery anodes using silicon waste sludge and the Ti-ion complex. X-ray diffraction (XRD) confirmed the raw waste silicon sludge powder to be pure silicon without other metal impurities and the particle size distribution is measured to be from 200 nm to 3 ㎛ by dynamic light scattering (DLS). As a result of pulverization by a planetary mill, the size of the single crystal according to the Scherrer formula is calculated to be 12.1 nm, but the average particle size of the agglomerate is measured to be 123.6 nm. A Si/TiO2 core-shell structure is formed using simple Ti complex ions, and the ratio of TiO2 peaks increased with an increase in the amount of Ti ions. Transmission electron microscopy (TEM) observations revealed that TiO2 coating on Si nanoparticles results in a Si-TiO2 core-shell structure. This result is expected to improve the stability and cycle of lithium-ion batteries as anodes.

키워드

과제정보

본 연구는 충남녹색환경지원센터 연구개발사업(No. 21-03-50-52-17)의 지원을 받아 수행된 연구입니다.

참고문헌

  1. Y. S. Na, H. Yoo, T. H. Kim, J. Choi, W. I. Lee, S. Choi and D. W. Park: Thin Solid Films, 587 (2015) 14. https://doi.org/10.1016/j.tsf.2014.12.038
  2. M. Ko, S. Chae, J. Ma, N. Kim, H. W. Lee, Y. Cui and J. Cho: Nat. Energy, 1 (2016) 1.
  3. S. Chae, S. H. Choi, N. Kim, J. Sung and J. Cho: Angew. Chem. Int. Ed., 59 (2020) 110. https://doi.org/10.1002/anie.201902085
  4. J. Lee, J. Koo, B. Jang and S. Kim: J. Power Sources, 329 (2016) 79. https://doi.org/10.1016/j.jpowsour.2016.08.035
  5. Z. Guo, Y. Chen, N. L. Lu: Multifunctional Nanocomposites for Energy and Environmental Applications, John Wiley & Sons (2018).
  6. J. Entwistle, A. Rennie and S. Patwardhan: J. Mater. Chem. A, 6 (2018) 18344. https://doi.org/10.1039/C8TA06370B
  7. S. Choi, D. S. Jung and J. W. Choi: Nano Lett., 14 (2014) 7120. https://doi.org/10.1021/nl503620z
  8. R. Kumar, A. Tokranov, B. W. Sheldon, X. Xiao, Z. Huang, C. Li, and T. Mueller: ACS Energy Lett., 1 (2016) 689. https://doi.org/10.1021/acsenergylett.6b00284
  9. Y. Yang, S. Wu, Y. Zhang, C. Liu, X. Wei, D. Luo and Z. Lin: Chem. Eng. J., 406 (2021) 126807. https://doi.org/10.1016/j.cej.2020.126807
  10. W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, and N. L. Wu: J. Power Sources, 140 (2005) 139. https://doi.org/10.1016/j.jpowsour.2004.07.032
  11. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang: ACS Nano, 6 (2012)1522. https://doi.org/10.1021/nn204476h
  12. Y. Li, K. Yan, H. W. Lee, Z. Lu, N. Liu and Y. Cui: Nat. Energy, 1 (2016) 1.
  13. K. W. Schroder, A. G. Dylla, S. J. Harris, L. J. Webb and K. J. Stevenson: ACS Appl. Mater. Interfaces, 6 (2014) 21510. https://doi.org/10.1021/am506517j
  14. Z. W. Zhou, L. Pan, Y. T. Liu, X. D. Zhu and X. M. Xie: 54 (2018) 4790. https://doi.org/10.1039/c8cc02040j
  15. J. J. Bae and J. T. Son: J. Nanosci. and Nanotechnol., 19 (2019) 1520. https://doi.org/10.1166/jnn.2019.16179
  16. D. H. Kim and B. J. Choi: Korean Powder Metall. Inst., 23 (2016) 170. https://doi.org/10.4150/KPMI.2016.23.2.170
  17. J. Lee, J. Hwang, H. Park, T. Sekino and W. B. Kim: Appl. Surf. Sci., 540 (2021) 148399. https://doi.org/10.1016/j.apsusc.2020.148399
  18. M. W. Shao, Y. Y. Shan, N. B. Wong and S. T. Lee: Adv. Funct. Mater., 15 (2005) 1478. https://doi.org/10.1002/adfm.200500080
  19. S. B. Qadri, J. P. Yang, E. F. Skelton and B. R. Ratna: Appl. Surf. Sci., 70 (1997) 1020.
  20. A. Monshi, M. R. Foroughi and M. R. Monshi: WJNSE, 2 (2012) 154.
  21. J. Reedijk and K. Poeppelmeier: Comprehensive Inorganic Chemistry II (Second Edition), Elsevier Ltd., (2013) 1.
  22. M. A. R. Miranda and J. M. Sasaki: Acta Crystallogr. A, 74 (2018) 54. https://doi.org/10.1107/S2053273317014929
  23. S. D. Kim, C. J. Kim and H. S. Yoon: J. Korea Org. Resour., 18 (2009) 24.
  24. M. S. Shin, T. M. Lee and S. M. Lee: J. Korean Electrochem. Soc., 22 (2019) 112. https://doi.org/10.5229/JKES.2019.22.3.112
  25. J. J. Park, S. M. Hong, E. K. Park, K. Y. Kim, M. K. Lee, C. K. Rhee, J. K. Lee and Y. S. Kwon: J. Korean Powder Metall. Inst., 19 (2012) 32. https://doi.org/10.4150/KPMI.2012.19.1.032
  26. H. Kim, M. Seo, M. H. Park and J. Cho: Angew. Chem., Int. Ed., 49 (2010) 2146. https://doi.org/10.1002/anie.200906287
  27. S. Yoon and J. H. Lee: Ceramist, 21 (2018) 283. https://doi.org/10.31613/ceramist.2018.21.3.07
  28. M. Catauro, E. Tranquillo, G. Dal Poggetto, M. Pasquali, A. Dell'Era and S. Vecchio Ciprioti: Materials, 11 (2018) 2364. https://doi.org/10.3390/ma11122364
  29. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang: ACS Nano, 6 (2012) 1522. https://doi.org/10.1021/nn204476h