Acknowledgement
First, Second and Fourth authors would like to acknowledge the facilities provided by BITS Pilani-Hyderabad Campus for carrying out the research and funding received from DST-FIST. First Author would like to Acknowledge Mr. P. Srinivasu and Mr. P. Sai Saran from IJM Concrete Pvt Ltd. for their valuable suggestions on proportioning concrete mixes.
References
- Abo Dhaheer, M.S., Al-Rubaye, M.M., Alyhya, W.S., Karihaloo, B.L. and Kulasegaram, S. (2016), "Proportioning of self-compacting concrete mixes based on target plastic viscosity and compressive strength: Part I-mix design procedure", J. Sustain. Cement Mater., 5(4), 199-216. https://doi.org/10.1080/21650373.2015.1039625.
- Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete with fuzzy logic", Int. J. Math. Comput. Sci., 5(5), 774-781. https://doi.org/10.5281/zenodo.1330501.
- Aggarwal, Y. and Aggarwal, P. (2011), "Prediction of compressive strength of SCC containing bottom ash using artificial neural networks", Int. J. Math. Comput. Sci., 5(5), 762-767. https://doi.org/10.5281/zenodo.1329661.
- Alqadi, A.N., Mustapha, K.N.B., Naganathan, S. and Al-Kadi, Q.N. (2013), "Development of self-compacting concrete using contrast constant factorial design", J. King Saud Univ. Eng. Sci., 25(2), 105-112. https://doi.org/10.1016/j.jksues.2012.06.002.
- Alyamac, K.E. and Ince, R. (2009), "A preliminary concrete mix design for SCC with marble powders", Constr. Build. Mater., 23(3), 1201-1210. https://doi.org/10.1016/j.conbuildmat.2008.08.012.
- Batchelor, G.K. (1977), "The effect of Brownian motion on the bulk stress in a suspension of spherical particles", J. Fluid Mech., 83(1), 97-117. https://doi.org/10.1017/S0022112077001062.
- Beycioglu, A. and Aruntas, H.Y. (2014), "Workability and mechanical properties of self-compacting concretes containing LLFA, GBFS and MC", Constr. Build. Mater., 73, 626-635. https://doi.org/10.1016/j.conbuildmat.2014.09.071.
- Boukendakdji, O., Kadri, E.H. and Kenai, S. (2012), "Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete", Cement Concrete Compos., 34(4), 583-590. https://doi.org/10.1016/j.cemconcomp.2011.08.013.
- Chong, J.S., Christiansen, E.B. and Baer, A.D. (1971), "Rheology of concentrated suspensions", J. Appl. Polym. Sci., 15(8), 2007-2021. https://doi.org/10.1002/app.1971.070150818.
- Deeb, R. (2013), "Flow of self-compacting concrete", Ph.D. Dissertation of Philosophy, Cardiff University.
- Dinakar, P. and Manu, S.N. (2014), "Concrete mix design for high strength self-compacting concrete using metakaolin", Mater. Des., 60, 661-668. https://doi.org/10.1016/j.matdes.2014.03.053.
- Dinakar, P., Sethy, K.P. and Sahoo, U.C. (2013), "Design of self-compacting concrete with ground granulated blast furnace slag", Mater. Des., 43, 161-169. https://doi.org/10.1016/j.matdes.2012.06.049.
- Domone, P.L. (2006), "Self-compacting concrete: An analysis of 11 years of case studies", Cement Concrete Compos., 28(2), 197-208. https://doi.org/10.1016/j.cemconcomp.2005.10.003.
- Douma, O.B., Boukhatem, B. and Ghrici, M. (2014), "Prediction compressive strength of self-compacting concrete containing fly ash using fuzzy logic inference system", Int. J. Civil Arch. Struct. Constr. Eng., 8(12), 1265-1269.
- Douma, O.B., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "Prediction of properties of self-compacting concrete containing fly ash using artificial neural network", Neur. Comput. Appl., 28(1), 707-718. https://doi.org/10.1007/s00521-016-2368-7.
- Dvorkin, L., Bezusyak, A., Lushnikova, N. and Ribakov, Y. (2012), "Using mathematical modeling for design of self-compacting high strength concrete with metakaolin admixture", Constr. Build. Mater., 37, 851-864. https://doi.org/10.1016/j.conbuildmat.2012.04.019.
- Frankel, N.A. and Acrivos, A. (1967), "On the viscosity of a concentrated suspension of solid spheres", Chem. Eng. Sci., 22(6), 847-853. https://doi.org/10.1016/0009-2509(67)80149-0.
- Gesoglu, M., Guneyisi, E. and O zbay, E. (2009), "Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume", Constr. Build. Mater., 23(5), 1847-1854. https://doi.org/10.1016/j.conbuildmat.2008.09.015.
- Ghanbari, A. (2011), "Self-compacting high and ultra-high-performance concretes", Ph.D. Dissertation of Philosophy, Cardiff University.
- Guneyisi, E., Gesoglu, M. and O zbay, E. (2010), "Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures", Constr. Build. Mater., 24(10), 1878-1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015.
- Kalyana Rama, J.S., Chauhan, D.R., Sivakumar, M.V.N., Vasan, A. and Murthy, A.R. (2017), "Fracture properties of concrete using damaged plasticity model-A parametric study", Struct. Eng. Mech., 64(1), 59-69. http://doi.org/10.12989/sem.2017.64.1.059.
- Kalyana Rama, J.S., Sivakumar, M.V.N., Vasan, A., Kubair, S. and Ramachandra Murthy, A. (2017), "Plastic viscosity-based mix design of self-compacting concrete with crushed rock fines", Comput. Concrete, 20(4), 461-468. https://doi.org/10.12989/cac.2017.20.4.461.
- Kanadasan, J. and Razak, H.A. (2014), "Mix design for self-compacting palm oil clinker concrete based on particle packing", Mater. Des., 56, 9-19. https://doi.org/10.1016/j.matdes.2013.10.086.
- Karihaloo, B.L., Murthy, A.R. and Iyer, N.R. (2013), "Determination of size-independent specific fracture energy of concrete mixes by the tri-linear model", Cement Concrete Res., 49, 82-88. https://doi.org/10.1016/j.cemconres.2013.03.010.
- Khaleel, O.R. and Razak, H.A. (2014), "Mix design method for self-compacting metakaolin concrete with different properties of coarse aggregate", Mater. Des., 53, 691-700. https://doi.org/10.1016/j.matdes.2013.07.072.
- Krieger, I.M. and Dougherty, T.J. (1959), "A mechanism for non- Newtonian flow in suspensions of rigid spheres", Transac. Soc. Rheol., 3(1), 137-152. https://doi.org/10.1122/1.548848.
- Kumar, P. and Mittal, K.L. (1999), Handbook of Microemulsion Science and Technology, CRC press.
- Le, H.T., Muller, M., Siewert, K. and Ludwig, H.M. (2015), "The mix design for self-compacting high-performance concrete containing various mineral admixtures", Mater. Des., 72, 51-62. https://doi.org/10.1016/j.matdes.2015.01.006.
- Li, F.X., Yu, Q.J., Wei, J.X. and Li, J.X. (2011), "Predicting the workability of self-compacting concrete using artificial neural network", Adv. Mater. Res., 168, 1730-1734. https://doi.org/10.4028/www.scientific.net/AMR.168-170.1730.
- Long, G., Gao, Y. and Xie, Y. (2015), "Designing more sustainable and greener self-compacting concrete", Constr. Build. Mater., 84, 301-306. https://doi.org/10.1016/j.conbuildmat.2015.02.072.
- Mathew, G. and Paul, M.M. (2012), "Mix design methodology for laterized self-compacting concrete and its behaviour at elevated temperature", Constr. Build. Mater., 36, 104-109. https://doi.org/10.1016/j.conbuildmat.2012.04.057.
- Murthy, A.R., Karihaloo, B.L., Iyer, N.R. and Prasad, B.R. (2013), "Determination of size-independent specific fracture energy of concrete mixes by two methods", Cement Concrete Res., 50, 19-25. https://doi.org/10.1016/j.cemconres.2013.03.015.
- Murthy, A.R., Karihaloo, B.L., Iyer, N.R. and Prasad, B.R. (2013), "Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy", Constr. Build. Mater., 47, 1160-1166. https://doi.org/10.1016/j.conbuildmat.2013.06.004.
- Nepomuceno, M.C., Pereira-de-Oliveira, L.A. and Lopes, S.M.R. (2014), "Methodology for the mix design of self-compacting concrete using different mineral additions in binary blends of powders", Constr. Build. Mater., 64, 82-94. https://doi.org/10.1016/j.conbuildmat.2014.04.021.
- Opara, H.E., Eziefula, U.G. and Eziefula, B.I. (2018), "Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete", Civil Eng., 13, 127-134.
- Pathak, S.S., Sharma, S., Sood, H. and Khitoliya, R.K. (2012), "Prediction of compressive strength of self compacting concrete with flyash and rice husk ash using adaptive neuro-fuzzy inference system", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
- Phan-Thien, N. and Karihaloo, B.L. (1994), "Materials with negative Poisson's ratio: A qualitative microstructural model", J. Appl. Mech., 61(4), 1001-1004. https://doi.org/10.1115/1.2901547.
- Rama, J.S., Sivakumar, M.V.N., Kubair, K.S. and Vasan, A. (2019), "Influence of plastic viscosity of mix on self-compacting concrete with river and crushed sand", Comput. Concrete, 23(1), 37-47. https://doi.org/10.12989/cac.2019.23.1.037.
- Rama, J.S.K., Sivakumar, M.V.N., Vasan, A., Garg, C. and Walia, S. (2015), "A review on studies of fracture parameters of self-compacting concrete", Adv. Struct. Eng., 1705-1716. https://doi.org/10.1007/978-81-322-2187-6_129.
- Saito, N. (1950), "Concentration dependence of the viscosity of high polymer solutions", J. Phys. Soc. Japan, 5(1), 4-8. https://doi.org/10.1143/JPSJ.5.4.
- Shenoy, A.V. (2013), Rheology of Filled Polymer Systems, Springer Science and Business Media.
- Shi, C., Wu, Z., Lv, K. and Wu, L. (2015), "A review on mixture design methods for self-compacting concrete", Constr. Build. Mater., 84, 387-398. https://doi.org/10.1016/j.conbuildmat.2015.03.079.
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
- Struble, L. and Sun, G.K. (1995), "Viscosity of Portland cement paste as a function of concentration", Adv. Cement Base. Mater., 2(2), 62-69. https://doi.org/10.1016/1065-7355(95)90026-8.
- Su, N., Hsu, K.C. and Chai, H.W. (2001), "A simple mix design method for self-compacting concrete", Cement Concrete Res., 31(12), 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X.
- Utracki, L.A. and Wilkie, C.A. (2002), Polymer Blends Handbook, 1, Kluwer Academic Publishers, Dordrecht.
- Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032.
- Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self-compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Constr. Build. Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028.
- Uysal, M., Yilmaz, K. and Ipek, M. (2012), "Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures", Constr. Build. Mater., 28(1), 321-326. https://doi.org/10.1016/j.conbuildmat.2011.08.076.
- Uysal, M., Yilmaz, K. and Ipek, M. (2012), "The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete", Constr. Build. Mater., 27(1), 263-270. https://doi.org/10.1016/j.conbuildmat.2011.07.049.
- Vand, V. (1948), "Viscosity of solutions and suspensions. II. Experimental determination of the viscosity-concentration function of spherical suspensions", J. Phys. Chem., 52(2), 300-314. https://doi.org/10.1021/j150458a002.
- Wallevik, O.H. and Wallevik, J.E. (2011), "Rheology as a tool in concrete science: The use of rheographs and workability boxes", Cement Concrete Res., 41(12), 1279-1288. https://doi.org/10.1016/j.cemconres.2011.01.009.