DOI QR코드

DOI QR Code

Bi1/2Na1/2TiO3-BiAlO3 무연 압전 세라믹스의 유전 및 전기 기계적 변형 특성에 대한 SrTiO3 첨가 효과

Effects of SrTiO3-Modification on the Dielectric and Electromechanical Strain Properties of Lead-Free Bi1/2Na1/2TiO3-BiAlO3 Piezoceramics

  • 이상섭 (울산대학교 첨단소재공학부) ;
  • 이창헌 (울산대학교 첨단소재공학부) ;
  • 즈엉 짱 안 (울산대학교 첨단소재공학부) ;
  • 김동혁 (울산대학교 첨단소재공학부) ;
  • 김병우 (울산대학교 전기공학부) ;
  • 한형수 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Lee, Sang Sub (School of Material Science and Engineering, University of Ulsan) ;
  • Lee, Chang-Heon (School of Material Science and Engineering, University of Ulsan) ;
  • Duong, Trang An (School of Material Science and Engineering, University of Ulsan) ;
  • Kim, Dong Hyeok (School of Material Science and Engineering, University of Ulsan) ;
  • Kim, Byeong Woo (Department of Electrical Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (School of Material Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Material Science and Engineering, University of Ulsan)
  • 투고 : 2021.08.07
  • 심사 : 2021.09.30
  • 발행 : 2021.10.27

초록

(Bi1/2Na1/2)TiO3 (BNT)-based ceramics are considered promising candidates for actuator application owing to their excellent electromechanical strain properties However, to obtain large strain properties, there remain several issues such as thermal stability and high operating fields. Therefore, this study investigates a reduction of operating field in (0.98-x)Bi1/2Na1/2TiO3-0.02 BiAlO3-xSrTiO3 (BNT-2BA-100xST, x = 0.20, 0.21, 0.22, 0.23, and 0.24) via analyses of the microstructure, crystal structure, dielectric, polarization, ferroelectric and electromechanical strain properties. The average grain size of BNT-${\underline{2}}$BA-100xST ceramics decreases with increasing ST content. Results of polarization and electromechanical strain properties indicate that a ferroelectric to relaxor state transition is induced by ST modification. As a consequence, a large electromechanical strain of 592 pm/V is obtained at a relatively low electric field of 4 kV/mm in 22 mol% ST-modified BNT-2BA ceramics. We believe that the materials synthesized in this study are promising candidates for actuator applications.

키워드

과제정보

This study was supported by the National Research Foundation (NRF) of the Republic of Korea (grants 2016R1D1A3B01008169 and 2020R1C1C1007375).

참고문헌

  1. J. Koruza, A. J. Bell, T. Fromling, K. G. Webber, K. Wang and J. Rodel, J. Materiomics, 4, 13 (2018). https://doi.org/10.1016/j.jmat.2018.02.001
  2. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rodel, J. Electroceramics, 29, 71 (2012). https://doi.org/10.1007/s10832-012-9742-3
  3. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  4. T. Zheng, J. Wu, D. Xiao and J. Zhu, Progr. Mater. Sci., 98, 552 (2018). https://doi.org/10.1016/j.pmatsci.2018.06.002
  5. D. Damjanovic, N. Klein, J. Li and V. Porokhonskyy, Funct. Mater. Lett., 3, 5 (2010). https://doi.org/10.1142/S1793604710000919
  6. L. Wu, B. Shen, Q. Hu, J. Chen, Y. Wang, Y. Xia, J. Yin and Z. Liu, J. Am. Ceram. Soc., 100, 4670 (2017). https://doi.org/10.1111/jace.15009
  7. J. Wu, J. Appl. Phys., 127, 190901 (2020). https://doi.org/10.1063/5.0006261
  8. H. S. Han, T. A. Duong, C. W. Ahn, W. Jo and J. S. Lee, Ceramist, 23, 89 (2020). https://doi.org/10.31613/ceramist.2020.23.1.06
  9. G. H. Jeong, S. S. Lee, C. W. Ahn, H. S. Han and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 337 (2020). https://doi.org/10.4313/JKEM.2020.33.5.337
  10. M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg and H. Fuess, J. Appl. Crystallogr., 43, 1314 (2010). https://doi.org/10.1107/S0021889810038264
  11. C. W. Ahn, C. H. Hong, B. Y. Choi, H. P. Kim, H. S. Han, Y. Hwang, W. Jo, K. Wang, J. F. Li, J. S. Lee and I. W. Kim, J. Korean Phys. Soc., 68, 1481 (2016). https://doi.org/10.3938/jkps.68.1481
  12. G. Song, F. Zhang, F. Liu, Z. Liu and Y. Li, J. Am. Ceram. Soc., 104, 4049 (2021). https://doi.org/10.1111/jace.17826
  13. J. Zylberberg, A. Beilk, E. T. Muromachi and Z. G. Ye, Chem. Mater., 19, 6385 (2007). https://doi.org/10.1021/cm071830f
  14. A. Ullah, C. W. Ahm, A. Hussain, I. W. Kim, H. I. Hwang and N. K. Cho, Solid State Commun., 150, 1145 (2010). https://doi.org/10.1016/j.ssc.2010.03.020
  15. J. Zylberberg, A. A. Belik, E. Takayama-Muromachi and Z. G. Ye, Chem. Mater., 19, 6385 (2007). https://doi.org/10.1021/cm071830f
  16. P. Baettig, C. F. Schelle, R. Lesar, U. V. Waghmare and N. A. Spaldin, Chem. Mater., 17, 1376 (2005). https://doi.org/10.1021/cm0480418
  17. A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee and I. W. Kim, J. Am. Ceram. Soc., 94, 3915 (2011). https://doi.org/10.1111/j.1551-2916.2011.04595.x
  18. H. T. K. Nugyen, T. A. Duong, F. Erkinov, C. W. Ahn, B. W. Kim, H. S. Han and J. S. Lee, J. Electron. Mater., 49, 6677 (2020). https://doi.org/10.1007/s11664-020-08436-9
  19. A. P. Hoang, S. Steiner, F. Yang, L. Li, D. Sinclair and T. Fromling, J. Eur. Ceram. Soc., 41, 2587 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.07.005
  20. H. T. K. Nguyen, T. A. Duong, F. Erkinov, H. W. Kang, B. W. Kim, C. W. Ahn, H. S. Han and J. S. Lee, J. Korean. Ceram. Soc., 57, 570 (2020). https://doi.org/10.1007/s43207-020-00051-y
  21. X. Y. Tong, Z. Z. Du, Y. T. Yang, M. W. Song, J. J. Zhou, H. B. Zhang, C. L. Guan, H. Liu and J. Z. Fang, J. Alloys Compd., 857, 15 (2021).
  22. Y. Zhu, Y. Zhang, B. Xie, P. Fan, M. A. Marwat, W. Ma, C. Wang, B. Yang, J. Xiao and H. Zhang, Ceram. Int., 44, 7851 (2018). https://doi.org/10.1016/j.ceramint.2018.01.220
  23. W. Krauss, D. Schutz, F. A. Mautner, A. Feteria and K. Reichmann, J. Eur. Ceram. Soc., 30, 1827 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.02.001
  24. H. L. Li, Q. Liu, J. J. Zhou, K. Wang, J. F. Li, H. Liu, J. Z. Fang, J. Eur. Ceram. Soc., 36, 2849 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.024
  25. K. Wang, A. Hussain, W. Jo and J. Rodel, J. Am. Ceram. Soc., 95, 2241 (2012). https://doi.org/10.1111/j.1551-2916.2012.05162.x
  26. K. Shen, Y. Liu, J. Wang, Z. Yu, X. Sun and Y. Lyu, Mater. Res. Express, 6, 115218 (2019). https://doi.org/10.1088/2053-1591/ab51b4
  27. H. Yu and Z. G. Ye, Appl. Phys. Lett., 93, 112902 (2008). https://doi.org/10.1063/1.2967335
  28. A. Ullah, C. W. Ahn, A. Hussain, S. Y. Lee, H. J. Lee and I. W. Kim, Curr. Appl. Phys., 10, 1174 (2010). https://doi.org/10.1016/j.cap.2010.02.006
  29. A. Ullah, S. Y. Lee, H. J. Lee, I. W. Kim, C. W. Ahn, H. I. Hwang, A. Hussain and J. S. Lee, J. Korean. Phys. Soc., 57, 1102 (2010). https://doi.org/10.3938/jkps.57.1102
  30. S. Jo, C. H. Hong, D. S. Kim, H. W. Kang, C. W. Ahn, H. G. Lee, S. Nahm, W. Jo and S. H. Han, Sens. Sens. Actuators, A, 258, 201 (2017). https://doi.org/10.1016/j.sna.2017.03.008
  31. T. H. Dinh, H. S. Han and J. S. Lee, Mater. Lett., 258, 126793 (2020). https://doi.org/10.1016/j.matlet.2019.126793