DOI QR코드

DOI QR Code

A Convergence Study on the Effects of Improving Buckwheat Dietary Fiber in Mice with Hyperlipidemia and Oxidative Stress

고지혈증과 산화적 스트레스가 유도된 생쥐에서 메밀 식이섬유의 개선 효과에 대한 융합 연구

  • Lee, Kwang Yeon (Department of Food and Nutrition, Far East University) ;
  • Bae, In Young (Department of Food and Nutrition, Far East University)
  • 이광연 (극동대학교 식품영양학과) ;
  • 배인영 (극동대학교 식품영양학과)
  • Received : 2021.07.22
  • Accepted : 2021.10.20
  • Published : 2021.10.28

Abstract

The effect of buckwheat dietary fiber (BDF) as hypolipidemic and antioxidant agent were determined in C57BL/6 mice fed a high fat diet (HFD) with different doses of 500 (low, BDF-L) or 1,000 (high, BDF-H) mg/kg of body weight, compared with the HFD-diet control group (HFD). The negative control group (ND) was fed the basal diet. Body weights in the BDF-L and BDF-H groups were significantly decreased as compared to those in the HFD group (p<0.05). BDF also improved the lipid profile in a dose-dependent manner; serum lipid profiles and levels of insulin, glucose, and free fatty acid were significantly decreased in the BDF-L and BDF-H groups, whereas HDL-C and adiponectin significantly increased as compared to the HFD group (p<0.05). Meanwhile, BDF lowered serum malondialdehyde (MDA) in comparison with the HFD group (p<0.05). The results demonstrate that the intake of BDF might prevent obesity and its related metabolic disorders by inducing dyslipidemia and oxidative stress.

고지방 식이로 고지혈증과 산화적 스트레스를 유도한 생쥐에서 메밀식이섬유의 개선 효과를 확인하고자 하였다. 고지방 식이와 함께 메밀식이섬유(저농도, 500 mg/kg; 고농도, 1,000 mg/kg)를 제공한 그룹의 체중은 고지방 식이만 제공한 그룹과 비교하여 유의적으로 감소하였다(p<0.05). 또한 메밀식이섬유를 제공한 그룹의 지질프로파일 개선 효과는 저농도에서 고농도로 용량 의존적으로 관찰되었다. 혈청 지질 프로파일과 인슐린, 포도당 및 유리 지방산의 수준은 메밀식이섬유 제공으로 유의하게 감소한 반면, HDL-C와 디포넥틴은 유의하게 증가했다(p<0.05). 한편, 고지방 식이만 제공한 그룹과 비교하여 메밀식이섬유 제공으로 혈청 말론다이알데히드(MDA) 수준이 농도 의존적으로 감소하였다(p<0.05). 결과적으로 메밀식이섬유의 섭취는 이상지질혈증과 산화 스트레스를 개선함으로써 비만과 관련 대사 장애를 예방할 수 있을 것으로 기대할 수 있었다.

Keywords

References

  1. C. I. Abuajah, A. C. Ogbonna & C. M. J. Osuji. (2015). Functional components and medicinal properties of food: a review. Journal of Food Science and Technology, 52(5), 2522-2529. https://doi.org/10.1007/s13197-014-1396-5
  2. M. Saxena, J. Saxena, R. Nema, D. Singh & A. Gupta. (2013). Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry, 6(1), 168-182.
  3. M. Miao, H. Jiang, B. Jiang, T. Zhang, S. W. Cui & Z. Jin. (2014). Phytonutrients for controlling starch digestion: Evaluation of grape skin extract. Food Chemistry, 145, 205-211. https://doi.org/10.1016/j.foodchem.2013.08.056
  4. F. Zhu, Y. Z. Cai, M. Sun & H. Corke. (2009). Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch. Food Chemistry, 112(4), 919-923. https://doi.org/10.1016/j.foodchem.2008.06.079
  5. F. Zhu, Y. Z. Cai, M. Sun & H. Corke (2008). Effect of phenolic compounds on the pasting and textural properties of wheat starch. Starch-Starke, 60(11), 609-616. https://doi.org/10.1002/star.200800024
  6. F. Barros, J. M. Awika & L. W. Rooney. (2012). Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. Journal of Agricultural and Food Chemistry, 60(46), 11609-11617. https://doi.org/10.1021/jf3034539
  7. Y. Chai, M. Wang & G. Zhang. (2013). Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. Journal of Agricultural and Food Chemistry, 61(36), 8608-8615. https://doi.org/10.1021/jf402821r
  8. M. Chopra, P. E. Fitzsimons, J. J. Strain, D. I. Thurnham & A. N. Howard. (2000). Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clinical Chemistry, 46(8), 1162-1170. https://doi.org/10.1093/clinchem/46.8.1162
  9. D. R. Ferry et al. (1996). Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research, 2(4), 659-668.
  10. M. A. Pereira et al. (1996). Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7, 12-dimethylbenz [a] anthracene-induced mammary cancer in rats. Carcinogenesis, 17(6), 1305-1311. https://doi.org/10.1093/carcin/17.6.1305
  11. Y. Q. Li, F. C. Zhou, F. Gao, J. S. Bian & F. Shan. (2009). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. Journal of Agricultural and Food Chemistry, 57(24), 11463-11468. https://doi.org/10.1021/jf903083h
  12. L. Zhang, X. Yang, S. Li & W. Gao. Preparation, physicochemical characterization and in vitro digestibility on solid complex of maize starches with quercetin. LWT-Food Science and Technology, 44(3), 787-792. https://doi.org/10.1016/j.lwt.2010.09.001
  13. C. S. Brennan. (2005). Dietary fibre, glycaemic response, and diabetes. Molecular Nutrition and Food Research, 49(6), 560-570. https://doi.org/10.1002/mnfr.200500025
  14. I. K Oh, I. Y. Bae & H. G. Lee. (2014). In vitro starch digestion and cake quality: impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 63, 98-103. https://doi.org/10.1016/j.ijbiomac.2013.10.038
  15. M. Minekus et al. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J
  16. I. Goni, A. Garcia-Alonso & F. Saura-Calixto. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9
  17. S. Shobana, Y. N. Sreerama & N. G. Malleshi (2009). Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry, 115(4), 1268-1273. https://doi.org/10.1016/j.foodchem.2009.01.042
  18. A. S. Cho, S. M. Jeon, M. J. Kim, J. Yeo, K. I. Seo & M. S. Choi. (2010). Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced- obese mice. Food and Chemical Toxicology, 48, 937-943. https://doi.org/10.1016/j.fct.2010.01.003
  19. Y. Hu, Z. Hou, R. Yi, Z. Wang, P. Sun, G. Li, X. Zhao & Q. Wang. (2017). Tartary buckwheat flavonoids ameliorate high fructose -induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice. Food & Function, 8, 2803-2816. https://doi.org/10.1039/C7FO00359E
  20. C. C. Lee, W. H. Hsu, S. R. Shen, Y. H. Cheng & S. C. Wu. (2012). Fagopyrum tataricum (Buckwheat) improved high-glucose induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Experimental Diabetes Research, 2012, 375673-375683.
  21. Y. Nie, D. Ren, Y. Lu, Y. Sun & X. Yang. (2015). Differential protective effects of polyphenol extracts from apple peels and fleshes against acute CCl4-induced liver damage in mice Food & Function, 6, 513-524. https://doi.org/10.1039/C4FO00557K
  22. M. A. Mansour. (2000). Protective effects of thymoquinone and desferrioxamine against hepatotoxicity of carbon tetrachloride in mice. Life Science, 66, 2583-2591. https://doi.org/10.1016/S0024-3205(00)00592-0