DOI QR코드

DOI QR Code

열 사이펀 성능에 따른 동상민감성 지반의 거동 비교

Frost Heave of Frost Susceptible Soil According to Performance of Thermo-syphon

  • 박동수 (한국해양대학교 해양과학기술융합학과) ;
  • 신문범 (한국해양대학교 해양과학기술융합학과) ;
  • 서영교 (한국해양대학교 해양공학과 교수 및 해양과학기술융합학과)
  • Park, Dong-Su (Dept. of Convergence Study on the Ocean Science and Technology, Korea Maritime and Oc ean Univ.) ;
  • Shin, Mun-Beom (Dept. of Convergence Study on the Ocean Science and Technology, Korea Maritime and Oc ean Univ.) ;
  • Seo, Young-Kyo (Dept. of Ocean Engrg., Korea Maritime and Ocean Univ., Dept. of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean Univ.)
  • 투고 : 2021.08.30
  • 심사 : 2021.10.15
  • 발행 : 2021.10.31

초록

동상민감성 지반의 융기 및 침하 방지를 위한 공법을 지반 안정화 공법이라고 하며 열 사이펀은 대표적인 지반 안정화 공법 중 하나이다. 열 사이펀은 최근 간편한 해석모델 개발과 더불어 열 해석이 진행되었지만, 이에 따른 동상민감성 지반의 열적 거동을 고려하지 않았다. 따라서 본 연구는 열 사이펀의 성능에 따른 지반의 온도 변화를 위한 열 해석과 이에 따른 지반의 거동을 예측하기 위한 구조해석을 동시에 수행하기 위해 ABAQUS 내부 사용자 서브루틴을 사용하여 열 사이펀을 적용한 TM(Thermo-Mechanical) 모델을 개발하여 열 사이펀의 성능에 따른 지반 융기 억제성능을 확인하였다. 해석결과 열 사이펀의 성능 증가에 따라 지반의 최종 융기가 감소하였으며 냉매 충전율 25%, 50% 그리고 100%의 열 사이펀 적용 시 각각 5.5%, 14.4%, 21% 융기 억제성능을 나타내었다.

The construction method to prevent the frost heave or thaw settlement is called the ground stabilization method, and the thermo-syphon is one of the typical ground stabilization methods. The thermo-syphon has recently been developed with a simple analysis model and thermal analysis has been carried out, but the frost heave of frost susceptible soil was not considered. This study was conducted using ABAQUS internal user subroutine to develop the numerical analysis model (Coupled thermo-mechanical) that can simultaneously perform thermal analysis for the temperature change of the soil according to the thermo-syphon and structural analysis to predict the frost heave of the soil accordingly. As a result of the numerical analysis, the frost heave of the soil decreased as the performance of the thermo-syphon increased. As for the main results, when the thermo-syphon which has contain 25%, 50%, and 100% of refrigerant filling ratio was applied, the reduction ratio of the frost heave was 5.5%, 14.4%, and 21% respectively.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1051104). 또한 본 연구는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다.

참고문헌

  1. Abdalla, B. A., Mei, H. X., McKinnon, C., and Gaffard, V. (2016), "Numerical Evaluation of Permafrost Thawing in Arctic Pipelines and Mitigation Strategies", Arctic Technology Conference, Canada.
  2. Abdalla, B., Fan, C., McKinnon, C., and Gaffard, V. (2015), "Numerical study of thermosyphon protection for frost heave", OMAE2015-42326, Proceeding of the ASME 34th International Conference on Ocean, Offshore and Arctic Engineering OMAE2015.
  3. Alizadehdakel, A., Rahimi, M., and Alsairafi, A. A. (2010), "CFD Modeling of Flow and Heat Transfer in a Thermosyphon", International Communication in Heat and Mass Transfer, Vol.37, pp.312-318. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.002
  4. Anderson, D. M. and Tice, A. R. (1972), "Predicting unfrozen water contents in frozen soils from surface area measurements", In Frost Action in Soils. Washington, D.C.: National Academy of Sciences, pp.12-18.
  5. Andersland, O. B. and Ladanyi, B. (2004), "Frozen Grouond Engineering 2nd edition", John Wiley&Sons. Inc, pp.322-326.
  6. Fadhl, B., Wrobel, L. C., and Jouhara, H. (2013), "Numerical Modelling of the Temperature Distribution in Two-phase Closed Thermosyphon", Applied Thermal Engineering, Vol.60, pp.122-131. https://doi.org/10.1016/j.applthermaleng.2013.06.044
  7. Fukuda, M., Kim, H., and Kim, Y. (1997), "Preliminary Results of Frost Heave Experiments Using Standard Test Sample Provided by TC8", Proceedings of the International Symposium on Ground Freezing and Frost Action in Soils, Sweden, pp.25-30.
  8. Guymon, G. L., Berg, R. L., and Hromadka, T. V. (1993), "Mathematical Model of Frost Heave and Thaw Settlement in Pavements", CRREL Report 93-2, U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory, Hanover, NH.
  9. Hartikainen, J. and Mikkola, M. (1997), "General Thermomechanical Model of Freezing Soil with Numerical Application", Proceedings, International Symposium on Ground Freezing and Frost Action in Soils, Swedin, pp.101-112.
  10. Henry, K. S., Zhu, M., and Michalowski, R. L. (2005), "Evaluation of Three Frost Heave Models", Proceedings Seventh International Conference on the Bearing Capacity of Roads, Railways and Airfields.
  11. Jafari, D., Filippeschi, S., Franco, A., and Marco, P. D. (2017), "Unsteady Experimental and Numerical Analysis of a Two-phase Closed Thermosyphon at Different Filling Ratio", Experimental Thermal of Fluid Science, Vol.81, pp.164-174. https://doi.org/10.1016/j.expthermflusci.2016.10.022
  12. Jang, C. G., Choi, C. H., Lee, J. G., and Lee, C. H. (2014), "Evaluation on Thermal Performance of Thermosyphon by Numerical Analysis", Journal of the Korean Geotechnical Society, Vol.30, No.9, pp.57-66. https://doi.org/10.7843/KGS.2014.30.9.57
  13. Johansen, O. (1975), "Thermal Conductivity of Soils", Ph.D. thesis, Trondheim, Norway, (CRREL Draft Translation 637), ADA044002.
  14. Johnston, G. H., Ladanyi, B., Morgenstern, N. R., and Penner, E. (1981), "Engineering Characteristics of Frozen and Thawing Soils", Permafrost Engineering Design and Construction, John Wiley & Sons.
  15. Kornard, J. M. and Morgenstern, N. R. (1980), "A Mechanistic Theory of Ice Lens Fromation in Fine-Grained Soils", Canadian Geotechnical Journal, Vol.17, pp.473-486. https://doi.org/10.1139/t80-056
  16. Ladanyi, B. and Shen, M. (1993), "Freezing Pressure Development on a Buried Chilled Pipeline", Proc., 2nd Int Symp. on Frost In Geotech. Engrg. (Arvind Phukan, ed.), Balkema, Rotterdam, The Netherlands, pp.23-33.
  17. Lay, R. D. (2005), "Development of a Frost Heave Test Apparatus", Brigham Young University Master of Science dissertation.
  18. Lee, J. G., Lee, C. H., Jang, C. G., and Choi, C. H. (2014), "Experimental and Numerical Investigation of the Performance of Vertical Thermosyphon for Frozen Ground Stabilization", J. Korean Geosynthetics Society, Vol.13, No.4, pp.45-56. https://doi.org/10.12814/jkgss.2014.13.4.045
  19. Li, H., Lai, Y., Wang, L., Yang, X., Jiang, N., Li, L., Wang, C., and Yang, B. (2019), "Review of the State of the Art: Ingeractions between a Buried Pipeline and Frozen Soil", Cold Regions Science and Technology, Vol.157, pp.171-186. https://doi.org/10.1016/j.coldregions.2018.10.014
  20. Michalowski, R. L. (1993), "A Constitutive Model of Saturated Soils for Fros Heave Simulations", Cold Regions Science and Technology, Vol.22, pp.47-63. https://doi.org/10.1016/0165-232X(93)90045-A
  21. Michalowski, R. L. and Zhu, M. (2006), "Frost Heave Modelling Using Porosity Rate Function", Int. J. Numer. Anal. Meth. Geomech., Vol.30, pp.703-722. https://doi.org/10.1002/nag.497
  22. O'Neill, K. and Miller, R. D. (1982), "Numerical Solutions for a Rigid-Ice Model of Secondary Frost Heave", CRREL Report 82-13, U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory, Hanover, NH.
  23. Park, D. S., Shin, M. B., and Seo, Y. K. (2021), "Development of Numerical Analysis Model for the Calculation of Thermal Conductivity of Thermo-syphon", Journal of The Korean Geotechnical Society, Vol.37, No.1, pp.5-15 https://doi.org/10.7843/KGS.2021.37.1.5
  24. Park, Y. M. and Lee, H. W. (1991), "Calculation of the Thermodynamic Properties of R-134a and A Preliminary Study of the Refrigeration Performance", Korean Journal of air-conditioning and refrigeration engineering, Vol.3, No.4, pp.286-296.
  25. Taber, S. (1930), "The Mechanics of Frost Heaving", J. Geol., Vol.38, pp.303-317. https://doi.org/10.1086/623720
  26. Terzaghi, K. (1952), "Permafrost", Harvard University Press.
  27. Tice, A. R., Anderson, D. M., and Banin, A. (1976), "The Prediction of Unfrozen Water Contents in Frozen Soils from Liquid Limit Determinations", U.S. Army Cold Regions Research and Engineering Laboratory Report CRREL 76-8.
  28. Xu, J., Eltaker, A., and Jukes, P. (2011), "Three-dimensional FE Model for Pipeline in Permafrost with Thermosyphon Protection", Arctic Technology Conference, USA.
  29. Zhang, Y. (2014), "Thermal-Hydro-Mechanical Model for Freezing and Thawing of Soils", Doctor of Philosophy (Civil Engineering) in the University of Michigan.
  30. Zhang, Y. and Michalowski, R. L. (2015), "Thermal-Hydro-Mechanical Analysis of Frost Heave and Thaw Settlement", J. Geotech. Geoenviron. Eng., Vol.141, No.7, 04015027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001305