DOI QR코드

DOI QR Code

Systematic Review of Reciprocal Changes after Spinal Reconstruction Surgery : Do Not Miss the Forest for the Trees

  • Kim, Chang-Wook (Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Hyun, Seung-Jae (Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Kim, Ki-Jeong (Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine)
  • 투고 : 2020.08.12
  • 심사 : 2021.01.27
  • 발행 : 2021.11.01

초록

The purpose of this review was to synthesize the research on global spinal alignment and reciprocal changes following cervical or thoracolumbar reconstruction surgery. We carried out a search of PubMed, EMBASE, and Cochrane Library for studies through May 2020, and ultimately included 11 articles. The optimal goal of a truly balanced spine is to maintain the head over the femoral heads. When spinal imbalance occurs, the human body reacts through various compensatory mechanisms to maintain the head over the pelvis and to retain a horizontal gaze. Historically, deformity correction has focused on correcting scoliosis and preventing scoliotic curve progression. Following substantial correction of a spinal deformity, reciprocal changes take place in the flexible segments proximal and distal to the area of correction. Restoration of lumbar lordosis following surgery to correct a thoracolumbar deformity induces reciprocal changes in T1 slope, cervical lordosis, pelvic shift, and lower extremity parameters. Patients with cervical kyphosis exhibit different patterns of reciprocal changes depending on whether they have head-balanced or trunk-balanced kyphosis. These reciprocal changes should be considered to in order to prevent secondary spine disorders. We emphasize the importance of evaluating the global spinal alignment to assess postoperative changes.

키워드

참고문헌

  1. Ames CP, Smith JS, Eastlack R, Blaskiewicz DJ, Shaffrey CI, Schwab F, et al. : Reliability assessment of a novel cervical spine deformity classification system. J Neurosurg Spine 23 : 673-683, 2015 https://doi.org/10.3171/2014.12.SPINE14780
  2. Ames CP, Smith JS, Scheer JK, Bess S, Bederman SS, Deviren V, et al. : Impact of spinopelvic alignment on decision making in deformity surgery in adults: a review. J Neurosurg Spine 16 : 547-564, 2012 https://doi.org/10.3171/2012.2.SPINE11320
  3. Barrey C, Roussouly P, Le Huec JC, D'Acunzi G, Perrin G : Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22 Suppl 6 : S834-S841, 2013
  4. Barrey C, Roussouly P, Perrin G, Le Huec JC : Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20 Suppl 5 : 626-633, 2011 https://doi.org/10.1007/s00586-011-1930-3
  5. Blondel B, Lafage V, Schwab F, Farcy JP, Bollini G, Jouve JL : Reciprocal sagittal alignment changes after posterior fusion in the setting of adolescent idiopathic scoliosis. Eur Spine J 21 : 1964-1971, 2012 https://doi.org/10.1007/s00586-012-2399-4
  6. Choi HY, Hyun SJ, Kim KJ, Jahng TA, Kim HJ : Radiographic and clinical outcomes following pedicle subtraction osteotomy : minimum 2-year follow-up data. J Korean Neurosurg Soc 63 : 99-107, 2020 https://doi.org/10.3340/jkns.2018.0170
  7. Day LM, Ramchandran S, Jalai CM, Diebo BG, Liabaud B, Lafage R, et al. : Thoracolumbar realignment surgery results in simultaneous reciprocal changes in lower extremities and cervical spine. Spine (Phila Pa 1976) 42 : 799-807, 2017 https://doi.org/10.1097/BRS.0000000000001928
  8. Deschenes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. : Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976) 35 : 989-994, 2010 https://doi.org/10.1097/BRS.0b013e3181bdcaa4
  9. Diebo BG, Ferrero E, Lafage R, Challier V, Liabaud B, Liu S, et al. : Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40 : 642-649, 2015 https://doi.org/10.1097/BRS.0000000000000844
  10. Dru AB, Lockney DT, Vaziri S, Decker M, Polifka AJ, Fox WC, et al. : Cervical spine deformity correction techniques. Neurospine 16 : 470-482, 2019 https://doi.org/10.14245/ns.1938288.144
  11. Dubousset J : Three-dimensional analysis of the scoliotic deformity in Weinstein SL (ed) : The pediatric spine: principles and practice, ed 1. New York : Raven Press, 1994, pp479-496
  12. Ferrero E, Liabaud B, Challier V, Lafage R, Diebo BG, Vira S, et al. : Role of pelvic translation and lower-extremity compensation to maintain gravity line position in spinal deformity. J Neurosurg Spine 24 : 436-446, 2016 https://doi.org/10.3171/2015.5.SPINE14989
  13. Glaser DA, Doan J, Newton PO : Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976) 37 : 1391-1397, 2012 https://doi.org/10.1097/BRS.0b013e3182518a15
  14. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR : Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976) 30 : 682-688, 2005 https://doi.org/10.1097/01.brs.0000155425.04536.f7
  15. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F : The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30 : 2024-2029, 2005 https://doi.org/10.1097/01.brs.0000179086.30449.96
  16. Ha Y, Schwab F, Lafage V, Mundis G, Shaffrey C, Smith J, et al. : Reciprocal changes in cervical spine alignment after corrective thoracolumbar deformity surgery. Eur Spine J 23 : 552-559, 2014 https://doi.org/10.1007/s00586-013-2953-8
  17. Hasegawa K, Okamoto M, Hatsushikano S, Shimoda H, Ono M, Homma T, et al. : Standing sagittal alignment of the whole axial skeleton with reference to the gravity line in humans. J Anat 230 : 619-630, 2017 https://doi.org/10.1111/joa.12586
  18. Hyun SJ, Han S, Kim KJ, Jahng TA, Kim HJ : Assessment of T1 slope minus cervical lordosis and C2-7 sagittal vertical axis criteria of a cervical spine deformity classification system using long-term follow-up data after multilevel posterior cervical fusion surgery. Oper Neurosurg (Hagerstown) 16 : 20-26, 2019 https://doi.org/10.1093/ons/opy055
  19. Hyun SJ, Jung JM : Spinal deformity surgery : it becomes an essential part of neurosurgery. J Korean Neurosurg Soc 61 : 661-668, 2018 https://doi.org/10.3340/jkns.2018.0150
  20. Iyer S, Nemani VM, Nguyen J, Elysee J, Burapachaisri A, Ames CP, et al. : Impact of cervical sagittal alignment parameters on neck disability. Spine (Phila Pa 1976) 41 : 371-377, 2016 https://doi.org/10.1097/BRS.0000000000001221
  21. Kang J, Hosogane N, Ames C, Schwab F, Hart R, Burton D, et al. : Diversity in surgical decision strategies for adult spine deformity treatment: the effects of neurosurgery or orthopedic training background and surgical experience. Neurospine 15 : 353-361, 2018 https://doi.org/10.14245/ns.1836086.043
  22. Knott PT, Mardjetko SM, Techy F : The use of the T1 sagittal angle in predicting overall sagittal balance of the spine. Spine J 10 : 994-998, 2010 https://doi.org/10.1016/j.spinee.2010.08.031
  23. Kuntz C 4th, Levin LS, Ondra SL, Shaffrey CI, Morgan CJ : Neutral upright sagittal spinal alignment from the occiput to the pelvis in asymptomatic adults: a review and resynthesis of the literature. J Neurosurg Spine 6 : 104-112, 2007 https://doi.org/10.3171/spi.2007.6.2.104
  24. Lafage R, Challier V, Liabaud B, Vira S, Ferrero E, Diebo BG, et al. : Natural head posture in the setting of sagittal spinal deformity: validation of chin-brow vertical angle, slope of line of sight, and McGregor's slope with health-related quality of life. Neurosurgery 79 : 108-115, 2016 https://doi.org/10.1227/neu.0000000000001193
  25. Lafage V, Schwab F, Skalli W, Hawkinson N, Gagey PM, Ondra S, et al. : Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33 : 1572-1578, 2008 https://doi.org/10.1097/BRS.0b013e31817886a2
  26. Lee DH, Ha JK, Chung JH, Hwang CJ, Lee CS, Cho JH : A retrospective study to reveal the effect of surgical correction of cervical kyphosis on thoraco-lumbo-pelvic sagittal alignment. Eur Spine J 25 : 2286-2293, 2016 https://doi.org/10.1007/s00586-016-4392-9
  27. Lee SH, Kim KT, Seo EM, Suk KS, Kwack YH, Son ES : The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J Spinal Disord Tech 25 : E41-E47, 2012 https://doi.org/10.1097/BSD.0b013e3182396301
  28. Lee SH, Son DW, Lee JS, Kim DH, Sung SK, Lee SW, et al. : Differences in cervical sagittal alignment changes in patients undergoing laminoplasty and anterior cervical discectomy and fusion. Neurospine 15 : 91-100, 2018 https://doi.org/10.14245/ns.1834864.432
  29. Makhni MC, Shillingford JN, Laratta JL, Hyun SJ, Kim YJ : Restoration of sagittal balance in spinal deformity surgery. J Korean Neurosurg Soc 61 : 167-179, 2018 https://doi.org/10.3340/jkns.2017.0404.013
  30. McClendon J Jr, Graham RB, Sugrue PA, Smith TR, Thompson SE, Koski TR : Cranial center of mass compared to C7 plumb line alignment in adult spinal deformity. World Neurosurg 91 : 199-204, 2016 https://doi.org/10.1016/j.wneu.2016.03.078
  31. Melhem E, Assi A, El Rachkidi R, Ghanem I : EOS(®) biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 10 : 1-14, 2016
  32. Miyazaki M, Hymanson HJ, Morishita Y, He W, Zhang H, Wu G, et al. : Kinematic analysis of the relationship between sagittal alignment and disc degeneration in the cervical spine. Spine (Phila Pa 1976) 33 : E870-E876, 2008 https://doi.org/10.1097/BRS.0b013e3181839733
  33. Mizutani J, Strom R, Abumi K, Endo K, Ishii K, Yagi M, et al. : How cervical reconstruction surgery affects global spinal alignment. Neurosurgery 84 : 898-907, 2019 https://doi.org/10.1093/neuros/nyy141
  34. Mizutani J, Verma K, Endo K, Ishii K, Abumi K, Yagi M, et al. : Global spinal alignment in cervical kyphotic deformity: the importance of head position and thoracolumbar alignment in the compensatory mechanism. Neurosurgery 82 : 686-694, 2018 https://doi.org/10.1093/neuros/nyx288
  35. Obeid I, Boniello A, Boissiere L, Bourghli A, Pointillart V, Gille O, et al. : Cervical spine alignment following lumbar pedicle subtraction osteotomy for sagittal imbalance. Eur Spine J 24 : 1191-1198, 2015 https://doi.org/10.1007/s00586-014-3738-4
  36. Park JH, Hyun SJ, Kim KJ, Jahng TA : Comparative study between pedicle subtraction osteotomy (PSO) and closing-opening wedge osteotomy (fish-mouth PSO) for sagittal plane deformity correction. Spine (Phila Pa 1976) 42 : E899-E905, 2017 https://doi.org/10.1097/BRS.0000000000002007
  37. Roussouly P, Pinheiro-Franco JL : Sagittal parameters of the spine: biomechanical approach. Eur Spine J 20 Suppl 5 : 578-585, 2011 https://doi.org/10.1007/s00586-011-1924-1
  38. Scheer JK, Ames CP, Deviren V : Assessment and treatment of cervical deformity. Neurosurg Clin N Am 24 : 249-274, 2013 https://doi.org/10.1016/j.nec.2012.12.010
  39. Scheer JK, Tang JA, Smith JS, Acosta FL Jr, Protopsaltis TS, Blondel B, et al. : Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine 19 : 141-159, 2013 https://doi.org/10.3171/2013.4.SPINE12838
  40. Sharp J, Bouton D, Anabell L, Degan T, Sienko S, Welborn MC : Image distortion in biplanar slot scanning: part 2 technology-specific factors. J Pediatr Orthop 40 : 587-591, 2020 https://doi.org/10.1097/BPO.0000000000001570
  41. Smith JS, Shaffrey CI, Lafage V, Blondel B, Schwab F, Hostin R, et al. : Spontaneous improvement of cervical alignment after correction of global sagittal balance following pedicle subtraction osteotomy. J Neurosurg Spine 17 : 300-307, 2012 https://doi.org/10.3171/2012.6.SPINE1250
  42. Suk KS, Kim KT, Lee SH, Kim JM : Significance of chin-brow vertical angle in correction of kyphotic deformity of ankylosing spondylitis patients. Spine (Phila Pa 1976) 28 : 2001-2005, 2003 https://doi.org/10.1097/01.BRS.0000083239.06023.78
  43. Tang JA, Scheer JK, Smith JS, Deviren V, Bess S, Hart RA, et al. : The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery 71 : 662-669; discussion 669, 2012 https://doi.org/10.1227/NEU.0b013e31826100c9
  44. Vrtovec T, Janssen MM, Pernus F, Castelein RM, Viergever MA : Analysis of pelvic incidence from 3-dimensional images of a normal population. Spine (Phila Pa 1976) 37 : E479-E485, 2012 https://doi.org/10.1097/BRS.0b013e31823770af
  45. Wui SH, Hyun SJ, Kang B, Kim KJ, Jahng TA, Kim HJ : Bicortical screw purchase at upper instrumented vertebra (UIV) can cause UIV fracture after adult spinal deformity surgery: a finite element analysis study. Neurospine 17 : 377-383, 2020 https://doi.org/10.14245/ns.1938100.050
  46. Wybier M, Bossard P : Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine 80 : 238-243, 2013 https://doi.org/10.1016/j.jbspin.2012.09.018