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VALUE DISTRIBUTIONS OF L-FUNCTIONS CONCERNING

POLYNOMIAL SHARING

Nintu Mandal

Abstract. We mainly study the value distributions of L-functions in

the extended selberg class. Concerning weighted sharing, we prove an
uniqueness theorem when certain differential monomial of a meromorphic

function share a polynomial with certain differential monomial of an L-
function which improve and generalize some recent results due to Liu, Li

and Yi [11], Hao and Chen [3] and Mandal and Datta [12].

1. Introduction

In today’s world the most important open problem in the pure mathemat-
ics is the Riemann hypothesis and its extension to the general classes of L-
functions. L-functions play very important role in the modern number the-
ory. We may regard the famous Riemann zeta-function, ζ(z) =

∑∞
n=1 1/nz =∏

p (1− 1/pz)
−1

where z = a+ ib, a > 1 and p denotes prime number and the
product is taken over all prime numbers, as the prototype. For a long time a
lot of attention have been given by many scholars on the Riemann hypothesis.

Throughout the paper by an L-function L we mean an L-function L in the
Selberg class. Such an L-function is defined by L(z) =

∑∞
n=1 a(n)/nz satisfying

the following hypothesis.

(i) a(n)� nε for every ε > 0;
(ii) There exists an integer k ≥ 0 such that (z − 1)kL(z) is a finite order

entire function;
(iii) Every L-function satisfies the functional equation

λL(z) = ωλL(1− z),
where

λL(z) = L(z)Qz
k∏
i=1

Γ(λiz + νi)
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with positive real numbers Q, λi and complex numbers νi, ω with
Reνi ≥ 0 and | ω |= 1.

(iv) L(z) satisfies L(z) =
∏
p Lp(z), where Lp(z) = exp(

∑∞
k=1 b(p

k)/pkz)

with coefficients b(pk) satisfying b(pk) � pkθ for some θ < 1/2 and p
denotes prime number.

If L satisfies the hypothesis (i)-(iii), then L is said to be an L-function in
the extended Selberg class.

In this paper, concerning weighted sharing we study the uniqueness prob-
lems using Nevanlinna’s value distribution theory. Here we use the standard
notations and definitions of the value distribution theory [4].

2. Preliminaries

Let f and g be two nonconstant meromorphic functions in the open complex
plane C. We denote by S(r, f) any function satisfying S(r, f) = o(T (r, f) as
r →∞, outside a possible exceptional set of finite linear measure.

If f and g have the same set of b points with the same multiplicities, we
say that f and g share b CM (counting multiplicities) and we say that f and
g share b IM (ignoring multiplicities) if we do not consider the multiplicities
where b ∈ C ∪ {∞}.

Definition 2.1 ([9]). Let f be a meromorphic function defined in the complex
plane. Also let n be a positive integer and α ∈ C ∪ {∞}. By N(r, α; f |≤ n)
we denote the counting function of the α points of f with multiplicity ≤ n and
by N(r, α; f |≤ n) the reduced counting function. Also by N(r, α; f |≥ n) we
denote the counting function of the α points of f with multiplicity ≥ n and by
N(r, α; f |≥ n) the reduced counting function. We define

Nn(r, α; f) = N(r, α; f) +N(r, α; f |≥ 2) + · · ·+N(r, α; f |≥ n).

Definition 2.2 ([9]). Let f be a meromorphic function defined in the com-
plex plane and P (Z) be a polynomial. Then we denote by N(r, P ; f |≤ m),
N(r, P ; f |≤ m), N(r, P ; f |≥ m), N(r, P ; f |≥ m), Nm(r, P ; f) etc. the count-
ing functions N(r, 0; f − P |≤ m), N(r, 0; f − P |≤ m), N(r, 0; f − P |≥ m),
N(r, 0; f − P |≥ m), Nm(r, 0; f − P ) etc., respectively.

Definition 2.3 ([5,6]). Let f be a meromorphic function defined in the complex
plane and n be an integer (≥ 0) or infinity. For α ∈ C ∪ {∞} we denote by
En)(α; f) the set of all zeros of f−α with multiplicities not exceeding n, where

a zero is counted according to its multiplicity. Also we denote by En)(α; f)
the set of all zeros of f −α with multiplicities not exceeding n, where a zero is
counted ignoring multiplicity.

Definition 2.4 ([5,6]). Let f and g be two meromorphic functions defined in
the complex plane and n be an integer (≥ 0) or infinity. For α ∈ C ∪ {∞} we
denote by En(α; f) the set of all zeros of f − α where a zero of multiplicity k
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is counted k times if k ≤ n and n + 1 times if k > n. If En(α; f) = En(α; g),
we say that f , g share the value α with weight n.

The definition implies that if f , g share a value α with weight n, then z1 is
an α-point of f with multiplicity k(≤ n) if and only if z1 is an α-point of g with
multiplicity k(≤ n) and z1 is an α-point of f with multiplicity k(> n) if and
only if z1 is an α-point of g with multiplicity m(> n) where k is not necessarily
equal to m.

We write f , g share (α, n) to mean that f , g share the value α with weight n.
Clearly if f , g share (α, n), then f , g share (α,m) for all integers m, 0 ≤ m < n.
Also we note that f , g share a value α IM or CM if and only if f , g share (α, 0)
or (α,∞), respectively.

In 2010 Li [10] study the uniqueness problems of meromorphic functions and
L-functions and proved the following theorem.

Theorem 2.1 ([10]). Let f be a nonconstant meromorphic function having
finitely many poles and L be a nonconstant L-function. If f and L share (α,∞)
and (β, 0), then L = f , where α and β are two distinct finite values.

In 2017, Liu, Li and Yi [11] proved the following uniqueness theorems of
L-functions.

Theorem 2.2 ([11]). Let j ≥ 1 and k ≥ 1 be integers such that j > 3k + 6.
Also let L be an L-function and f be a nonconstant meromorphic function.
If {f j}(k) and {Lj}(k) share (1,∞), then f = αL for some nonconstant α
satisfying αj = 1.

Theorem 2.3 ([11]). Let j ≥ 1 and k ≥ 1 be integers such that j > 3k + 6.
Also let L be an L-function and f be a nonconstant meromorphic function.
If {f j}(k)(z) − (z) and {Lj}(k)(z) − (z) share (0,∞), then f = αL for some
nonconstant α satisfying αj = 1.

Definition 2.5 ([12]). Let f be a meromorphic function defined in the complex
plane and P (z) be a polynomial. Then we denote by Em)(P ; f), Em)(P ; f) and

Em(P ; f) the sets Em)(0; f−P ), Em)(0; f−P ) and Em(0; f−P ), respectively.

Considering weighted sharing in 2018 Hao and Chen [3] proved the following
theorem.

Theorem 2.4 ([3]). Let L be an L-function and f be a meromorphic function
defined in the complex plane C with finitely many poles. Let α1, α2 ∈ C be
distinct and m1,m2 be positive integers such that m1m2 > 1. If Emj

(αj , f) =
Emj

(αj , L), j = 1, 2, then L = f.

Considering weighted sharing of small functions in 2020 Mandal and Datta
[12] proved the following theorem.

Theorem 2.5 ([12]). Let L be a nonconstant L-function and ρ be a small
function of L such that ρ 6= 0,∞. If E4)(ρ;L) = E4)(ρ; (Lm)(k)), E2)(ρ;L) =
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E2)(ρ; (Lm)(k)) and

2N2+k(r, 0;Lm) ≤ (σ + o(1))T (r, L),

where m ≥ 1, k ≥ 1 are integers and 0 < σ < 1, then L = (Lm)(k).

Now the following question comes naturally.

Question 2.1. Can we take a polynomial of z in place of z in Theorem 2.3?

Question 2.2. Can we reduce the weight of the sharing of values in Theorems
2.2 and 2.3?

Question 2.3. Is it possible to consider weighted sharing of values of (fm)(l)

and (Lm)(l) in Theorems 2.4 and 2.5?

Definition 2.6 ([5]). Let two nonconstant meromorphic functions f and g
share a value α IM. We denote by N∗(r, α; f, g) the counting function of the
α-points of f and g with different multiplicities, where each α-point is counted
only once.

Clearly N∗(r, α; f, g) = N∗(r, α; g, f).

Definition 2.7. Let two nonconstant meromorphic functions f and g share a
value α IM. We denote by N(r, α; f | > g) the counting function of the α-points
of f and g with multiplicities with respect to f is greater than the multiplicities
with respect to g, where each α-point is counted once only.

Definition 2.8. Let two nonconstant meromorphic functions f and g share
a value α IM. We denote by NE(r, α; f, g| > m) the counting function of the
α-points of f and g with multiplicities greater than m and the multiplicities
with respect to f is equal to the multiplicities with respect to g, where each
α-point is counted once only.

Definition 2.9 ([8]). We denote by N⊗(r, 0; f (k)) (N⊗(r, 0; f (k))) the counting
function (reduced counting function) of those zeros of f (k) which are not the
zeros of f(f − 1).

Definition 2.10 ([8]). We denote by N0(r, 0; f (k)) (N0(r, 0; f (k))) the counting
function (reduced counting function) of those zeros of f (k) which are not the
zeros of the nonconstant meromorphic function f .

Throughout the paper we mean by f , g two nonconstant meromorphic func-
tions defined in the open complex plane C.

3. Main results

Using weighted sharing we try to solve Questions 2.1, 2.2 and 2.3 and prove
the following theorem.
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Theorem 3.1. Let f be a nonconstant meromorphic function and L be a non-
constant L-function. If (fm)(l), (Lm)(l) share (P, k) and f , L share (∞, 0)
where m ≥ 1, l ≥ 1, k ≥ 0 are integers and P (z) is an n-th degree polynomial.
Then f = dL, for some constant d satisfying dm = 1 if one of the following
holds

(i) k = 0 and m > 5l + 7;
(ii) k = 1 and m > 5l+9

2 ;
(iii) k ≥ 2 and m > 2l + 2.

4. Lemmas

In this section we present some necessary lemmas.
Henceforth we denote by Ω the function defined by

Ω = (
Φ′′

Φ′
− 2Φ′

Φ− 1
)− (

Ψ′′

Ψ′
− 2Ψ′

Ψ− 1
),

where Φ and Ψ are meromorphic functions defined in the complex plane.

Lemma 4.1 ([13]). Let L be an L-function with degree q. Then

T (r, L) =
q

π
r log r +O(r).

Lemma 4.2 ([12]). Let L be an L-function. Then N(r,∞;L) = S(r, L) =
O(log r).

Lemma 4.3. Let f be a nonconstant meromorphic function and L be an L-
function. If f and L share (∞, 0), then N(r,∞; f) = S(r, L) = O(log r).

Proof. Since f and L share (∞, 0) therefore by Lemma 4.2 we haveN(r,∞; f) =
N(r,∞;L) = S(r, L) = O(log r). This completes the proof. �

Lemma 4.4 ([16]). Let f(z) = α0+α1z+···+αnz
n

β0+β1z+···+βmzm
be a nonconstant rational

function defined in the complex plane C, where α0, α1, . . . , αn( 6= 0) and β0, β1,
. . . , βm( 6= 0) are complex constants. Then

T (r, f) = max{m,n} log r +O(1).

Lemma 4.5 ([16]). Let f be a transcendental meromorphic function defined
in the complex plane C. Then

lim
r→∞

T (r, f)

log r
=∞.

Lemma 4.6 ([15]). Let f be a nonconstant meromorphic function and let l be
a positive integer. If ρ be a small function of f , then

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r, ρ, f (l))−N(r, 0, (
f (l)

ρ
)′) + S(r, f).
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Lemma 4.7. Let f be a nonconstant meromorphic function and L be a non-
constant L-function. If (fm)(l), (Lm)(l) share (P (z), 0), where m ≥ 1, l ≥ 1,
k ≥ 0 are integers and P (z) is an n-th degree polynomial and m > l + 1, then
f and L are transcendental meromorphic functions.

Proof. Let the degree of L be q. Then by Lemma 4.1 we have T (r, L) =
q
π r log r+O(r). Hence by Lemmas 4.4 and 4.5 L is a transcendental meromor-
phic function.

Let Φ = (fm)(l)

P and Ψ = (Lm)(l)

P . Since (fm)(l), (Lm)(l) share (P (z), 0)
therefore Φ, Ψ share (1, l) except zeros of P . Let z0 be a zero of L of multiplicity
n0 but not a zero of P . Then z0 is a zero of Lm with multiplicity mn0 and

so z0 is a zero of Lm

P of multiplicity mn0. Hence z0 is a zero of ( (Lm)(l)

P )′ with

multiplicity at least mn0 − l − 1. Again let z1 be a zero of (Lm)(l)

P − 1 with

multiplicity n1, then z1 is a zero of ( (Lm)(l)

P − 1)′ with multiplicity n1 − 1.
Hence By Lemma 4.2, Lemma 4.4 and Lemma 4.6 we have

T (r, Lm) = mT (r, L) +O(1)

≤ N(r,∞;Lm) +N(r, 0;Lm) +N(r, P, (Lm)
(l)

)

−N(r, 0, (
(Lm)

(l)

P
)′) + S(r, L)

≤ (l + 1)N(r, 0;L) +N(r, 0,
(Lm)

(l)

P
− 1)

−N⊗(r, 0, (
(Lm)

(l)

P
)′) +O(log r)

≤ (l + 1)N(r, 0;L) +N(r, 0,
(fm)

(l)

P
− 1)

−N⊗(r, 0, (
(Lm)

(l)

P
)′) +O(log r)

≤ (l + 1)T (r, L) + T (r, (fm)
(l)

) +O(log r).(4.1)

By Lemma 4.4 we have from (4.1)

(4.2) (m− l − 1)T (r, L) ≤ T (r, (fm)
(l)

) +O(log r).

Since m > l + 1 therefore from (4.2) it follows that f is a transcendental
meromorphic function. �

Lemma 4.8 ([17]). Let f be a nonconstant meromorphic function and k, p are
two positive integers. Then

Np(r, 0; f (k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f)

and

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).
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Lemma 4.9 ([14]). Let two meromorphic functions f and g be such that
(fm)(l) = (gm)(l) where m, l are positive integer. If m > l + 1, then f = dg
for some constant d such that dm = 1.

Lemma 4.10. Let f , L share (∞, 0), where f is a nonconstant meromorphic

function and L is a nonconstant L-function. Let Φ = (fm)(l)

P and Ψ = (Lm)(l)

P ,
where m, l are positive integers such that m > 2l+ 2 and P (z) is an nth degree
polynomial. If Ω = 0, then either (fm)(l)(Lm)(l) = P 2 or f = dL for some
constant d such that dm = 1.

Proof. Let Ω = (Φ′′

Φ′ − 2Φ′

Φ−1 )− (Ψ′′

Ψ′ − 2Ψ′

Ψ−1 ) = 0.
Integrating we have

(4.3) Φ− 1 =
Ψ− 1

C −D(Ψ− 1)
,

where C(6= 0) and D are constants.
Now we have to consider the following two cases.
Case 1. Let D = 0. Then from (4.3) we have

(4.4) Φ− 1 =
(Ψ− 1)

C
.

If C 6= 1, then from (4.4)

(4.5) N(r, 0; Φ) = N(r, 1− C; Ψ).

Since f , L share (∞, 0) therefore by Lemma 4.2, Lemma 4.8 and the second
fundamental theorem we have

T (r, Lm) ≤ T (r,Ψ) +Nl+1(r, 0;Lm)−N(r, 0; Ψ) + S(r, L)

≤ N(r,∞; Ψ) +N(r, 0; Ψ) +N(r, 1− C; Ψ) +Nl+1(r, 0;Lm)

−N(r, 0; Ψ) + S(r, L)

≤ N(r,∞;L) +N(r, 0; Φ) +Nl+1(r, 0;Lm) +O(log r)

≤ lN(r,∞; f) + (l + 1)N(r, 0; f) +Nl+1(r, 0;Lm) +O(log r)

≤ lN(r,∞;L) + (l + 1)N(r, 0; f) + (l + 1)N(r, 0;L) +O(log r)

≤ (l + 1)T (r, L) + (l + 1)T (r, f) +O(log r).(4.6)

Without loss of generality we may assume that T (r, f) ≤ T (r, L) for r ∈ I
where I is a set of infinite measure. Hence for r ∈ I we have from (4.6)

mT (r, L) ≤ (2l + 2)T (r, L) +O(log r),

which is a contradiction since m > 2l + 2.
Hence C = 1 and from (4.4) we have Φ = Ψ.
Therefore by Lemma 4.9 we have f = dL, for some constant d such that

dm = 1.
Case 2. Let D 6= 0.
In this case we have to consider the following two subcases.



736 N. MANDAL

Subcase 2.1. Let C = −D.
If D = 1, then from (4.3) we have ΦΨ = 1. Hence (fm)(l)(Lm)(l) = P 2.
If D 6= 1, then from (4.3) we have 1

Φ = −DΨ
(1−D)Ψ−1 .

Hence N(r, 0; Φ) = N(r, 1
1−D ; Ψ).

Now proceeding as in the Case 1 we arrive at a contradiction.
Subcase 2.2. Let C 6= −D.
If D = 1, then from (4.3) we have

(4.7) Φ =
−C

Ψ− C − 1
.

Since f , L share (∞, 0) therefore by Lemma 4.2 and Lemma 4.4 we have from
(4.7)

N(r, C + 1; Ψ) = N(r,∞; Φ)

= N(r,∞; f) +O(log r)

= O(log r).

Now proceeding as in the Case 1 we arrive at a contradiction.
If D 6= 1, then from (4.3) we have

Φ− (1− 1

D
) =

−C
D2(Ψ− C+D

D )
.

Therefore

N(r,
C +D

D
; Ψ) = N(r,∞; Φ)

= N(r,∞; f) +O(log r)

= O(log r).

Hence proceeding as in the Case 1 we arrive at a contradiction.
This completes the proof of the lemma. �

Lemma 4.11 ([1]). Let Φ and Ψ be two nonconstant meromorphic functions
sharing (1, 0). If Ω 6= 0, then

T (r,Φ) ≤ N2(r, 0; Φ) +N2(r,∞; Φ) +N2(r, 0; Ψ) +N2(r,∞; Ψ)

+ 2N(r, 0; Φ) + 2N(r,∞; Φ) +N(r, 0; Ψ) +N(r,∞; Ψ)

+ S(r,Φ) + S(r,Ψ).

Lemma 4.12 ([1]). Let Φ and Ψ be two nonconstant meromorphic functions
sharing (1, 1). If Ω 6= 0, then

T (r,Φ) ≤ N2(r, 0; Φ) +N2(r,∞; Φ) +N2(r, 0; Ψ) +N2(r,∞; Ψ)

+
1

2
N(r, 0; Φ) +

1

2
N(r,∞; Φ) + S(r,Φ) + S(r,Ψ).

Lemma 4.13 ([7]). Let f be a nonconstant meromorphic function. Then

N0(r, 0; f (l)) ≤ lN(r,∞; f) +N(r, 0; f | < l) + lN(r, 0, f | ≥ l) + S(r, f).
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Lemma 4.14 ([2]). Let f and g be two nonconstant meromorphic functions
sharing (1, l), where 2 ≤ l ≤ ∞. Then

N(r, 1; g)−N(r, 1; g)

≥ N(r, 1; f | = 2) + 2N(r, 1; f | = 3) + · · ·+ (l − 1)N(r, 1; f | = l)

+ lN(r, 1; f | > g) + (l + 1)N(r, 1; g| > f) + lNE(r, 1; f, g| > l + 1).

5. Proof of the main result

Proof of Theorem 3.1. Let Φ = (fm)(l)

P and Ψ = (Lm)(l)

P . Since (fm)(l), (Lm)(l)

share (P, k) and f , L share (∞, 0) therefore Φ, Ψ share (1, k) except the zeros
of P and (∞, 0).

Now we have to consider the following two cases.
Case 1. Let Ω = 0. By Lemma 4.10 we have either (fm)(l)(Lm)(l) = P 2 or

f = dL for some constant d such that dm = 1.
If (fm)(l)(Lm)(l) = P 2, then

(5.1) ΦΨ = 1.

Since f and L share (∞, 0) and m > 2l+ 2 therefore from (5.1) it is clear that
if z0 is not a zero of P , then z0 is neither a zero of f nor a zero of L. Again
since f and L share (∞, 0) and m > l + 2 therefore from (5.1) it is clear that
∞ is a Picard exceptional value of f and L. Hence

(5.2) T (r, L) =
|A|r
π

(1 +O(1)) +O(log r),

where A is a nonzero constant.
Therefore from Lemma 4.1 and (5.2) we arrive at a contradiction.
Hence f = dL for some constant d such that dm = 1.
Case 2. Let Ω 6= 0.
In this case we have to consider the following three subcases.
Subcase 2.1. Let k = 0. From Lemma 4.3, Lemma 4.4 and Lemma 4.8 we

have

N2(r, 0; Φ) ≤ N2(r, 0; (fm)(l)) +O(log r)

≤ T (r, (fm)(l))−mT (r, f) +Nl+2(r, 0; fm) +O(log r) + S(r, f)

≤ T (r,Φ)−mT (r, f) +Nl+2(r, 0; fm) +O(log r) + S(r, f).(5.3)

From (5.3) we have

(5.4) mT (r, f) ≤ T (r,Φ)−N2(r, 0; Φ) +Nl+2(r, 0; fm) +O(log r) + S(r, f).

By Lemma 4.2, Lemma 4.3, Lemma 4.8, Lemma 4.11 and (5.4) we have

mT (r, f) ≤ 4N(r,∞; f) + 3N(r,∞;L) + 2N(r, 0; (fm)(l)) +Nl+2(r, 0; fm)

+N2(r, 0; (Lm)(l)) +N(r, 0; (Lm)(l)) +O(log r) + S(r, f)

≤ 2Nl+1(r, 0; fm) + 2lN(r,∞; f) + (l + 2)N(r, 0; f)



738 N. MANDAL

+Nl+2(r, 0;Lm) + lN(r,∞;L) +Nl+1(r, 0;Lm)

+ lN(r,∞;L) +O(log r) + S(r, f)

≤ (3l + 4)N(r, 0; f) + (2l + 3)N(r, 0;L) +O(log r) + S(r, f)

≤ (5l + 7)T (r) +O(log r) + S(r, f),(5.5)

where T (r) = max{T (r, f), T (r, L)}.
Similarly we have

(5.6) mT (r, L) ≤ (5l + 7)T (r) + S(r, f) +O(log r).

From (5.5) and (5.6) we arrive at a contradiction since m > 5l + 7.
Subcase 2.2. Let k = 1.
Using Lemma 4.2, Lemma 4.3 and Lemma 4.8 we have

N2(r, 0; Φ) ≤ N2(r, 0; (fm)(l)) +O(log r)

≤ T (r, (fm)(l))−mT (r, f) +Nl+2(r, 0; fm) +O(log r) + S(r, f)

≤ T (r,Φ)−mT (r, f) +Nl+2(r, 0; fm) +O(log r) + S(r, f).(5.7)

From (5.7) we have

(5.8) mT (r, f) ≤ T (r,Φ)−N2(r, 0; Φ) +Nl+2(r, 0; fm) +O(log r) + S(r, f).

By Lemma 4.2, Lemma 4.3, Lemma 4.8, Lemma 4.12 and (5.8) we have

mT (r, f) ≤ 5

4
N(r,∞; f) +

1

2
N(r, 0; (fm)(l)) +Nl+2(r, 0; fm)

+N2(r, 0; (Lm)(l)) +O(log r) + S(r, f)

≤ 1

2
{lNl+1(r, 0; f) + lN(r,∞; f)}+Nl+2(r, 0; fm)

+N2(r, 0; (Lm)(l)) +O(log r) + S(r, f)

≤ 3l + 5

2
N(r, 0; f) +Nl+2(r, 0;Lm) +O(log r) + S(r, f)

≤ 5l + 9

2
T (r) +O(log r) + S(r, f),(5.9)

where T (r) = max{T (r, f), T (r, L)}.
Similarly we have

(5.10) mT (r, L) ≤ 5l + 9

2
T (r) +O(log r) + S(r, f).

From (5.9) and (5.10) we arrive at a contradiction since m > 5l+9
2 .

Subcase 2.3. Let k ≥ 2. Clearly Ω has only simple poles and the possible
poles of Ω occur at

(i) poles of Φ and Ψ with different multiplicities,
(ii) multiple zeros of Φ and Ψ,
(iii) 1 points of Φ and Ψ with different multiplicities,
(iv) zeros of Φ′ which are not zeros of Φ(Φ− 1),



VALUE DISTRIBUTIONS OF L-FUNCTIONS 739

(v) zeros of Ψ′ which are not zeros of Ψ(Ψ− 1).
Hence

N(r,∞; Ω) ≤ N∗(r,∞; Φ,Ψ) +N∗(r, 1; Φ,Ψ) +N(r, 0; Φ| ≥ 2)

+N(r, 0; Ψ| ≥ 2) +N⊗(r, 0; Φ′) +N⊗(r, 0; Ψ′).(5.11)

Now let z1 be a simple zero of Φ− 1 but not a zero of P . Then z1 is a simple
zero of Ψ− 1 and a zero of Ω.

Hence by Lemma 4.2 we get

(5.12) N(r, 1; Φ ≤ 1) ≤ N(r, 0; Ω) ≤ N(r,∞; Ω) + S(r, f) +O(log r).

From (5.11) and (5.12) we have

N(r, 1; Φ) ≤ N(r, 1; Φ| ≥ 2) +N(r, 1; Φ ≤ 1)

≤ N∗(r,∞; Φ,Ψ) +N∗(r, 1; Φ,Ψ) +N(r, 0; Φ| ≥ 2)

+N(r, 0; Ψ| ≥ 2) +N⊗(r, 0; Φ′) +N⊗(r, 0; Ψ′)

+N(r, 1; Φ| ≥ 2) + S(r, f) +O(log r).(5.13)

Using Lemma 4.13 and Lemma 4.14 we have

N⊗(r, 0; Ψ′) +N(r, 1; Φ| ≥ 2) +N∗(r, 1; Φ,Ψ)

≤ N⊗(r, 0; Ψ′) +N(r, 1; Φ| = 2)

+N(r, 1; Φ| = 3) + · · ·+N(r, 1; Φ| = k) +NE(r, 1; Φ,Ψ| > k + 1)

+N(r, 1; Φ| > Ψ) +N(r, 0; Φ| > Ψ) +N∗(r, 1; Φ,Ψ)

≤ N⊗(r, 0; Ψ′)−N(r, 1; Φ| = 3)− · · · − (k − 2)N(r, 1; Φ| = k)

− (k − 1)NE(r, 1; Φ,Ψ| > k + 1)− (k − 1)N(r, 1; Φ| > Ψ)

− kN(r, 0; Ψ| > Φ) +N(r, 1; Ψ)−N(r, 1; Ψ) +N∗(r, 1; Φ,Ψ)

≤ N⊗(r, 0; Ψ′) +N(r, 1; Ψ)−N(r, 1; Ψ)

− (k − 2)N(r, 1; Φ| > Ψ)− (k − 1)N(r, 0; Ψ| > Φ)

≤ N0(r, 0; Ψ′)− (k − 2)N(r, 1; Φ| > Ψ)− (k − 1)N(r, 0; Ψ| > Φ)

≤ N(r, 0; Ψ) +N(r,∞; Ψ)− (k − 2)N(r, 1; Φ| > Ψ)

− (k − 1)N(r, 0; Ψ| > Φ) + S(r, L)

≤ N(r, 0; Ψ) +N(r,∞; Ψ)− (k − 2)N∗(r, 1; Φ,Ψ)

−N(r, 0; Ψ| > Φ) + S(r, L).(5.14)

Hence by the second fundamental theorem we get from (5.13) and (5.14),
Lemma 4.2, Lemma 4.3 and Lemma 4.8

mT (r, f) ≤ T (r,Φ) +Nl+2(r, 0; fm)−N2(r, 0; Φ) + S(r, f) +O(log r)

≤ N(r, 0; Φ) +N(r,∞; Φ) +N(r, 1; Φ) +Nl+2(r, 0; fm)
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−N2(r, 0; Φ)−N⊗(r, 0; Φ′) + S(r, f) +O(log r)

≤ N(r, 0; Φ) +N(r,∞; f) +N(r,∞;L)

+N(r, 0; Φ| ≥ 2) +N(r, 0; Ψ| ≥ 2) +N(r, 1; Φ| ≥ 2)

+N∗(r, 1; Φ,Ψ) +N⊗(r, 0; Ψ′) +N⊗(r, 0; Φ′) +Nl+2(r, 0; fm)

−N2(r, 0; Φ)−N⊗(r, 0; Φ′) + S(r, f) +O(log r)

≤ N(r, 0; Φ) + 2N(r,∞;L) +N(r, 0; Φ| ≥ 2)

+N(r, 0; Ψ| ≥ 2) +N(r, 1; Φ| ≥ 2) +N∗(r, 1; Φ,Ψ)

+N⊗(r, 0; Ψ′) +Nl+2(r, 0; fm)−N2(r, 0; Φ) + S(r, f) +O(log r)

≤ N(r, 0; Ψ| ≥ 2) +N(r, 0; Ψ) +Nl+2(r, 0; fm) +N(r,∞; Ψ)

− (k − 2)N∗(r, 1; Φ,Ψ)−N(r, 0; Ψ| > Φ) + S(r, f) +O(log r)

≤ N2(r, 0; Ψ) +Nl+2(r, 0; fm) +N(r,∞;L)− (k − 2)N∗(r, 1; Φ,Ψ)

−N(r, 0; Ψ| > Φ) + S(r, f) +O(log r)

≤ N2(r, 0; Ψ) +Nl+2(r, 0; fm)− (k − 2)N∗(r, 1; Φ,Ψ)

−N(r, 0; Ψ| > Φ) + S(r, f) +O(log r)

≤ N2(r, 0; (Lm)
(l)

) +Nl+2(r, 0; fm) + S(r, f) +O(log r)

≤ (l + 2)N(r, 0;L) + (l + 2)N(r, 0; f) + S(r, f) +O(log r)

≤ (l + 2){T (r, f) + T (r, L)}+ S(r, f) +O(log r).(5.15)

Similarly we have

(5.16) mT (r, L) ≤ (l + 2){T (r, f) + T (r, L)}+ S(r, f) + S(r, L) +O(log r).

From (5.15) and (5.16) we arrive at a contradiction since m > 2l + 2. This
completes the proof. �
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