Commun. Korean Math. Soc. 36 (2021), No. 4, pp. 829-833

 $\begin{array}{l} {\rm https://doi.org/10.4134/CKMS.c200380} \\ {\rm pISSN:~1225\text{-}1763~/~eISSN:~2234\text{-}3024} \end{array}$

THE ACTION OF SPECIAL LINEAR GROUP ON THE SET OF MUTUALLY DISTINCT TRIPLE POINTS OF CIRCLE AND INVARIANT MEASURE

SANGHOON KWON

ABSTRACT. We investigate the Möbius transformation action of $PSL(2,\mathbb{R})$ on the set of mutually distinct ordered triple points of $\mathbb{R} \cup \{\infty\}$.

1. Introduction

The upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ has a large group of conformal automorphisms, consisting of Möbius transformations of the form

$$z\mapsto \frac{az+b}{cz+d}$$

for $a, b, c, d \in \mathbb{R}$ and ad - bc > 0. These symmetries form the group

$$PSL(2,\mathbb{R}) = SL(2,\mathbb{R})/\{\pm I\}.$$

Under the $PSL(2,\mathbb{R})$ -action, \mathbb{H} has an invariant metric

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

called the Poincaré metric. Denoting by z=x+yi, we have a corresponding measure

$$dA(z) = \frac{dxdy}{y^2}$$

and the distance function

$$d(z,w) = \log \frac{|z - \overline{w}| + |z - w|}{|z - \overline{w}| - |z - w|}.$$

Let us denote by $T^1\mathbb{H}$ the unit tangent bundle of \mathbb{H} , which is the bundle $\{(z, \mathbf{v}): z \in \mathbb{H}, \mathbf{v} \in T_z\mathbb{H} \text{ with } \|\mathbf{v}\| = 1\}$ of unit-length tangent vectors on the upper half-plane.

Received October 15, 2020; Accepted December 22, 2020. 2010 Mathematics Subject Classification. Primary 37E35; Secondary 28D05. Key words and phrases. Upper-half plane, invariant measure, projective frame. 830 S. KWON

The action of the projective special linear group $PSL(2,\mathbb{R})$ on the unit tangent bundle $T^1\mathbb{H}$ of the upper half plane \mathbb{H} is given by (for example, see Chapter 9 of [2])

$$\left[\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \right] \colon (z, \mathbf{v}) \mapsto \left(\frac{az+b}{cz+d}, \frac{\mathbf{v}}{(cz+d)^2} \right) \text{ for } z \in \mathbb{H}, \mathbf{v} \in \mathcal{T}_z \mathbb{H}.$$

In particular, the induced action of the modular group $PSL(2, \mathbb{Z})$ on $T^1\mathbb{H}$ serves as a key example of ergodic theory on homogeneous spaces. (See also [1] for various concepts and applications for Riemann surfaces other than modular surface.)

The boundary at infinity $\partial_{\infty}\mathbb{H}$ may be identified with $\mathbb{R} \cup \{\infty\}$ and hence with S^1 . Let us say that a mutually distinct ordered triple points $(w_1, w_2, w_3) \in (S^1)^3$ is *positively ordered* if one reaches w_2 before w_3 when starting counterclockwise from w_1 .

We note that there is a bijection between the unit tangent bundle $T^1\mathbb{H}$ of the upper half plane and the set of mutually distinct positively ordered triple points (w_1, w_2, w_3) of S^1 by the following manner. Take $w_1 = \ell(-\infty)$ and $w_3 = \ell(\infty)$ for the bi-infinite geodesic ℓ for which $\ell(0) = z$ and $\ell'(0) = \mathbf{v}$. Let $\mathbf{w} \in T_z\mathbb{H}$ be the tangent vector obtained by rotating \mathbf{v} by $\frac{\pi}{2}$ clockwise. Let $w_2 = \ell'(\infty)$ where ℓ' is the bi-infinite geodesic whose tangent vector at z is \mathbf{w} .

In this article, we investigate the invariant measure of the Möbius transformation action of the modular group $PSL(2,\mathbb{R})$ on the set of mutually distinct ordered triple points $(w_1, w_2, w_3) \in (S^1)^3$.

Let $(S^1)^3_{\text{pos}}$ be the set of positively ordered triple points of S^1 . Here and throughout, we identify S^1 with $\mathbb{R} \cup \{\infty\}$ and pull the real distance on $\mathbb{R} \cup \{\infty\}$ back to S^1 .

Theorem 1.1. The measure λ on $(S^1)^3_{pos}$ given by

$$d\lambda = \frac{dw_1 dw_2 dw_3}{(w_1 - w_2)(w_2 - w_3)(w_3 - w_1)}$$

is the $SL(2,\mathbb{R})$ -invariant measure.

We note that $(w_1-w_2)(w_2-w_3)(w_3-w_1)$ is always positive since (w_1,w_2,w_3) is positively oriented.

2. Proof of Main Theorem

Given (z, \mathbf{v}) in $\mathrm{T}^1\mathbb{H}$, let z = x + yi (y > 0) and θ be the angle between \mathbf{v} and the x-axis. We may identify the elements (z, \mathbf{v}) of $\mathrm{T}^1\mathbb{H}$ with $(x + yi, \theta)$. The Liouville measure

$$dm = \frac{dxdyd\theta}{y^2}$$

is the unique (up to scalar) $PSL(2,\mathbb{R})$ -invariant measure on $T^1\mathbb{H}$ (see Chapter 9 of [2]).

Lemma 2.1. The one-to-one correspondence $(x, y, \theta) \leftrightarrow (w_1, w_2, w_3)$ between $T^1\mathbb{H}$ and $(\mathbb{R} \cup \{\infty\})_{pos}^3$ is explicitly given by

(2.1)
$$w_1 = x + y \tan \theta - y |\sec \theta|,$$

$$w_2 = x - y \cot \theta + y |\csc \theta|,$$

$$w_3 = x + y \tan \theta + y |\sec \theta|,$$

and

$$x = \frac{w_1^2 w_3 + w_1 w_2^2 - 4w_1 w_2 w_3 + w_1 w_3^2 + w_2^2 w_3}{(w_1 - w_2)^2 + (w_2 - w_3)^2},$$

$$(2.2) y = \frac{(w_1 - w_2)(w_3 - w_2)^2}{(w_1 - w_2)^2 + (w_2 - w_3)^2},$$

$$\theta = \arctan\left(\frac{(w_1 - w_3)^2 (w_1 - 2w_2 + w_3)}{2(w_1 - w_2)(w_2 - w_3)^2}\right).$$

Proof. First, we note that Equation (2.1) follows directly from Figure 2.

FIGURE 2. $(x+iy,\theta) \leftrightarrow (w_1,w_2,w_3)$

Now let us recall that two Euclidean circles with Cartesian equation

$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$
 and $x^{2} + y^{2} + 2g'x + 2f'y + c' = 0$

are orthogonal if and only if 2gg' + 2ff' = c + c'. For the unique geodesic ℓ with $\ell(0) = z$ and $\ell(\infty) = w_2$, let us denote by $\ell(-\infty) = w_4$. Let O_1 be the circle centered at $\frac{w_2 + w_4}{2}$ with radius $\frac{|w_2 - w_4|}{2}$ and let O_2 be the circle centered

832 S. KWON

at $\frac{w_1+w_3}{2}$ with radius $\frac{|w_1-w_3|}{2}$. Since they cut one another at right angles on z=x+yi, it follows that

$$\frac{(x^2 + y^2 - w_2^2)(w_1 + w_3)}{x - w_2} = 2w_1w_3 + \frac{2w_2(x^2 + y^2 - w_2^2)}{x - w_2} - 2w_2^2$$

and

$$y = \sqrt{-(x - w_1)(x - w_3)}$$
.

Solving these equations yields the formula of x and y in Equation (2.2). From the relation

$$\tan \theta = \frac{w_1 + w_3 - 2x}{2y}$$

we obtain the formula of θ in Equation (2.2).

Now we will give the proof of Theorem 1.1. Since

$$dm = \frac{dxdyd\theta}{y^2}$$

is the $PSL(2, \mathbb{R})$ -invariant measure on $T^1\mathbb{H}$ and the one-to-one correspondence $(x, y, \theta) \leftrightarrow (w_1, w_2, w_3)$ is a diffeomorphism almost everywhere, the measure on $(\mathbb{R} \cup \{\infty\})^3_{pos}$ locally given by

$$\frac{1}{y^2} \left| \frac{\partial(x, y, \theta)}{\partial(w_1, w_2, w_3)} \right| dw_1 dw_2 dw_3$$

is invariant under $PSL(2, \mathbb{R})$.

By Lemma 2.1, the Jacobian matrix $\frac{\partial(x,y,\theta)}{\partial(w_1,w_2,w_3)}$ is given by

$$\begin{bmatrix} 1 & \tan \theta + |\sec \theta| & y \sec^2 \theta + y |\sec \theta| \tan \theta \\ 1 & -\cot \theta + |\csc \theta| & y \csc^2 \theta - y |\csc \theta| \cot \theta \\ 1 & \tan \theta - |\sec \theta| & y \csc^2 \theta - y |\csc \theta| \cot \theta \end{bmatrix}$$

of which the determinant is $y \sec^2(\frac{\theta}{2}) \sec^2 \theta$. Applying the formula of y and θ of Equation (2.2), we get

$$\frac{1}{y^2} \left| \frac{\partial(x, y, \theta)}{\partial(w_1, w_2, w_3)} \right| dw_1 dw_2 dw_3 = \frac{dw_1 dw_2 dw_3}{(w_1 - w_2)(w_2 - w_3)(w_3 - w_1)}.$$

This completes the proof of Theorem 1.1.

3. More on parametrization and fundamental domain

Hopf parametrization

There is another parametrization of $(z, \mathbf{v}) \in \mathbf{T}^1 \mathbb{H}$, called *Hopf parametrization*, by two distinct boundary points ξ and η at infinity together with a real number $t \in \mathbb{R}$. Given $(x+yi,\theta) \in \mathbf{T}^1 \mathbb{H}$, there is a unique bi-infinite parametrized geodesic α of \mathbb{H} such that $\alpha(0) = x + yi$ and $\alpha'(0) = \mathbf{v}$.

Let $\xi = \alpha(\infty)$ and $\eta = \alpha(-\infty)$. Let o be the orthogonal projection point of $i \in \mathbb{H}$ onto the geodesic α and t be the real number for which $\alpha(t) = o$.

Under this parametrization $(x+yi,\theta) \leftrightarrow (\xi,\eta,t)$, the similar argument gives

$$\frac{dxdyd\theta}{y^2} = \frac{2d\xi d\eta dt}{(\eta - \xi)^2}.$$

Fundamental domain

For each (z, \mathbf{v}) in $\mathrm{T}^1\mathbb{H}$, we can find a neighborhood of (z, \mathbf{v}) which does not contain any other element of the $\mathrm{PSL}(2, \mathbb{Z})$ -orbit of (z, \mathbf{v}) . This enables us to construct fundamental domains, which contain exactly one representative for the $\mathrm{PSL}(2, \mathbb{Z})$ -orbit of every (z, \mathbf{v}) in $\mathrm{T}^1\mathbb{H}$.

There are various ways of constructing a strong fundamental domain, but a common choice is the union

$$\{(z, \mathbf{v}) \colon z \in R, \mathbf{v} \in \mathbf{T}_z^1 \mathbb{H}\} \cup \left\{ (w_1, \mathbf{v}) \in \mathbf{T}^1 \mathbb{H} \colon 0 \leqslant \arg(\mathbf{v}) < \frac{2\pi}{3} \right\}$$
$$\cup \left\{ (w_2, \mathbf{v}) \in \mathbf{T}^1 \mathbb{H} \colon 0 \leqslant \arg(\mathbf{v}) < \pi \right\}$$

for two branched points $w_1 = \frac{1}{2} + \frac{\sqrt{3}i}{2}$ and $w_2 = i$ and the region

$$R = \left\{ z \in \mathbb{H} \colon |z| > 1, -\frac{1}{2} \leqslant \text{Re}(z) < \frac{1}{2} \right\} \cup \left\{ z \in \mathbb{H} \colon |z| = 1, -\frac{1}{2} < \text{Re}(z) < 0 \right\}$$

bounded by the vertical lines $\mathrm{Re}(z)=-\frac{1}{2}$ and $\mathrm{Re}(z)=\frac{1}{2}$ and the circle |z|=1. It would be interesting to construct explicitly a fundamental domain for the action of $PSL(2,\mathbb{R})$ on $(S^1)^3_{\mathrm{pos}}$.

We remark that the positive characteristic analogue case is attained in [3]. Namely, the author considers $PGL(2, \mathbb{F}_q[t])$ -action on the (q+1)-regular tree \mathcal{T} and its fundamental domain as a subset of $\partial_{\infty} \mathcal{T}_{\mathrm{dist}}^3$, the set of mutually distinct ordered triple points on $\partial_{\infty} \mathcal{T}$.

References

- D. Borthwick, Spectral theory of infinite-area hyperbolic surfaces, second edition, Progress in Mathematics, 318, Birkhäuser/Springer, 2016. https://doi.org/10.1007/978-3-319-33877-4
- M. Einsiedler and T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011. https://doi. org/10.1007/978-0-85729-021-2
- [3] S. Kwon, A fundamental domain for PGL(2, F_q[t])\PGL(2, F_q((t⁻¹))), Bull. Korean Math. Soc. 57 (2020), no. 6, 1491–1499. https://doi.org/10.4134/BKMS.b200021

SANGHOON KWON

DEPARTMENT OF MATHEMATICS EDUCATION

CATHOLIC KWANDONG UNIVERSITY

Gangneung-si 25601, Korea

Email address: skwon@cku.ac.kr