THE ACTION OF SPECIAL LINEAR GROUP ON THE SET OF MUTUALLY DISTINCT TRIPLE POINTS OF CIRCLE AND INVARIANT MEASURE

Sanghoon Kwon
Abstract. We investigate the Möbius transformation action of $\operatorname{PSL}(2, \mathbb{R})$ on the set of mutually distinct ordered triple points of $\mathbb{R} \cup\{\infty\}$.

1. Introduction

The upper half-plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ has a large group of conformal automorphisms, consisting of Möbius transformations of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

for $a, b, c, d \in \mathbb{R}$ and $a d-b c>0$. These symmetries form the group

$$
\operatorname{PSL}(2, \mathbb{R})=S L(2, \mathbb{R}) /\{ \pm I\}
$$

Under the $\operatorname{PSL}(2, \mathbb{R})$-action, \mathbb{H} has an invariant metric

$$
d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}
$$

called the Poincaré metric. Denoting by $z=x+y i$, we have a corresponding measure

$$
d A(z)=\frac{d x d y}{y^{2}}
$$

and the distance function

$$
d(z, w)=\log \frac{|z-\bar{w}|+|z-w|}{|z-\bar{w}|-|z-w|}
$$

Let us denote by $\mathrm{T}^{1} \mathbb{H}$ the unit tangent bundle of \mathbb{H}, which is the bundle $\left\{(z, \mathbf{v}): z \in \mathbb{H}, \mathbf{v} \in \mathrm{~T}_{z} \mathbb{H}\right.$ with $\left.\|\mathbf{v}\|=1\right\}$ of unit-length tangent vectors on the upper half-plane.

The action of the projective special linear group $\operatorname{PSL}(2, \mathbb{R})$ on the unit tangent bundle $T^{1} \mathbb{H}$ of the upper half plane \mathbb{H} is given by (for example, see Chapter 9 of [2])

$$
\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]:(z, \mathbf{v}) \mapsto\left(\frac{a z+b}{c z+d}, \frac{\mathbf{v}}{(c z+d)^{2}}\right) \text { for } z \in \mathbb{H}, \mathbf{v} \in \mathrm{~T}_{z} \mathbb{H} .
$$

In particular, the induced action of the modular group $\operatorname{PSL}(2, \mathbb{Z})$ on $\mathrm{T}^{1} \mathbb{H}$ serves as a key example of ergodic theory on homogeneous spaces. (See also [1] for various concepts and applications for Riemann surfaces other than modular surface.)

The boundary at infinity $\partial_{\infty} \mathbb{H}$ may be identified with $\mathbb{R} \cup\{\infty\}$ and hence with S^{1}. Let us say that a mutually distinct ordered triple points $\left(w_{1}, w_{2}, w_{3}\right) \in$ $\left(S^{1}\right)^{3}$ is positively ordered if one reaches w_{2} before w_{3} when starting counterclockwise from w_{1}.

We note that there is a bijection between the unit tangent bundle $T^{1} \mathbb{H}$ of the upper half plane and the set of mutually distinct positively ordered triple points $\left(w_{1}, w_{2}, w_{3}\right)$ of S^{1} by the following manner. Take $w_{1}=\ell(-\infty)$ and $w_{3}=\ell(\infty)$ for the bi-infinite geodesic ℓ for which $\ell(0)=z$ and $\ell^{\prime}(0)=\mathbf{v}$. Let $\mathbf{w} \in \mathrm{T}_{z} \mathbb{H}$ be the tangent vector obtained by rotating \mathbf{v} by $\frac{\pi}{2}$ clockwise. Let $w_{2}=\ell^{\prime}(\infty)$ where ℓ^{\prime} is the bi-infinite geodesic whose tangent vector at z is \mathbf{w}.

Figure 1. $(z, \mathbf{v}) \leftrightarrow\left(w_{1}, w_{2}, w_{3}\right)$
In this article, we investigate the invariant measure of the Möbius transformation action of the modular group $P S L(2, \mathbb{R})$ on the set of mutually distinct ordered triple points $\left(w_{1}, w_{2}, w_{3}\right) \in\left(S^{1}\right)^{3}$.

Let $\left(S^{1}\right)_{\text {pos }}^{3}$ be the set of positively ordered triple points of S^{1}. Here and throughout, we identify S^{1} with $\mathbb{R} \cup\{\infty\}$ and pull the real distance on $\mathbb{R} \cup\{\infty\}$ back to S^{1}.

Theorem 1.1. The measure λ on $\left(S^{1}\right)_{\text {pos }}^{3}$ given by

$$
d \lambda=\frac{d w_{1} d w_{2} d w_{3}}{\left(w_{1}-w_{2}\right)\left(w_{2}-w_{3}\right)\left(w_{3}-w_{1}\right)}
$$

is the $S L(2, \mathbb{R})$-invariant measure.
We note that $\left(w_{1}-w_{2}\right)\left(w_{2}-w_{3}\right)\left(w_{3}-w_{1}\right)$ is always positive since $\left(w_{1}, w_{2}, w_{3}\right)$ is positively oriented.

2. Proof of Main Theorem

Given (z, \mathbf{v}) in $\mathrm{T}^{1} \mathbb{H}$, let $z=x+y i(y>0)$ and θ be the angle between \mathbf{v} and the x-axis. We may identify the elements (z, \mathbf{v}) of $\mathrm{T}^{1} \mathbb{H}$ with $(x+y i, \theta)$. The Liouville measure

$$
d m=\frac{d x d y d \theta}{y^{2}}
$$

is the unique (up to scalar) $\operatorname{PSL}\left(2, \mathbb{R}\right.$)-invariant measure on $\mathrm{T}^{1} \mathbb{H}$ (see Chapter 9 of [2]).

Lemma 2.1. The one-to-one correspondence $(x, y, \theta) \leftrightarrow\left(w_{1}, w_{2}, w_{3}\right)$ between $T^{1} \mathbb{H}$ and $(\mathbb{R} \cup\{\infty\})_{\text {pos }}^{3}$ is explicitly given by

$$
\begin{align*}
& w_{1}=x+y \tan \theta-y|\sec \theta|, \\
& w_{2}=x-y \cot \theta+y|\csc \theta|, \tag{2.1}\\
& w_{3}=x+y \tan \theta+y|\sec \theta|,
\end{align*}
$$

and

$$
\begin{align*}
& x=\frac{w_{1}^{2} w_{3}+w_{1} w_{2}^{2}-4 w_{1} w_{2} w_{3}+w_{1} w_{3}^{2}+w_{2}^{2} w_{3}}{\left(w_{1}-w_{2}\right)^{2}+\left(w_{2}-w_{3}\right)^{2}} \\
& y=\frac{\left(w_{1}-w_{2}\right)\left(w_{3}-w_{2}\right)^{2}}{\left(w_{1}-w_{2}\right)^{2}+\left(w_{2}-w_{3}\right)^{2}} \tag{2.2}\\
& \theta=\arctan \left(\frac{\left(w_{1}-w_{3}\right)^{2}\left(w_{1}-2 w_{2}+w_{3}\right)}{2\left(w_{1}-w_{2}\right)\left(w_{2}-w_{3}\right)^{2}}\right)
\end{align*}
$$

Proof. First, we note that Equation (2.1) follows directly from Figure 2.

Figure 2. $(x+i y, \theta) \leftrightarrow\left(w_{1}, w_{2}, w_{3}\right)$
Now let us recall that two Euclidean circles with Cartesian equation

$$
x^{2}+y^{2}+2 g x+2 f y+c=0 \quad \text { and } \quad x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0
$$

are orthogonal if and only if $2 g g^{\prime}+2 f f^{\prime}=c+c^{\prime}$. For the unique geodesic ℓ with $\ell(0)=z$ and $\ell(\infty)=w_{2}$, let us denote by $\ell(-\infty)=w_{4}$. Let O_{1} be the circle centered at $\frac{w_{2}+w_{4}}{2}$ with radius $\frac{\left|w_{2}-w_{4}\right|}{2}$ and let O_{2} be the circle centered
at $\frac{w_{1}+w_{3}}{2}$ with radius $\frac{\left|w_{1}-w_{3}\right|}{2}$. Since they cut one another at right angles on $z=x+y i$, it follows that

$$
\frac{\left(x^{2}+y^{2}-w_{2}^{2}\right)\left(w_{1}+w_{3}\right)}{x-w_{2}}=2 w_{1} w_{3}+\frac{2 w_{2}\left(x^{2}+y^{2}-w_{2}^{2}\right)}{x-w_{2}}-2 w_{2}^{2}
$$

and

$$
y=\sqrt{-\left(x-w_{1}\right)\left(x-w_{3}\right)}
$$

Solving these equations yields the formula of x and y in Equation (2.2). From the relation

$$
\tan \theta=\frac{w_{1}+w_{3}-2 x}{2 y}
$$

we obtain the formula of θ in Equation (2.2).
Now we will give the proof of Theorem 1.1. Since

$$
d m=\frac{d x d y d \theta}{y^{2}}
$$

is the $\operatorname{PSL}(2, \mathbb{R})$-invariant measure on $\mathrm{T}^{1} \mathbb{H}$ and the one-to-one correspondence $(x, y, \theta) \leftrightarrow\left(w_{1}, w_{2}, w_{3}\right)$ is a diffeomorphism almost everywhere, the measure on $(\mathbb{R} \cup\{\infty\})_{\text {pos }}^{3}$ locally given by

$$
\frac{1}{y^{2}}\left|\frac{\partial(x, y, \theta)}{\partial\left(w_{1}, w_{2}, w_{3}\right)}\right| d w_{1} d w_{2} d w_{3}
$$

is invariant under $\operatorname{PSL}(2, \mathbb{R})$.
By Lemma 2.1, the Jacobian matrix $\frac{\partial(x, y, \theta)}{\partial\left(w_{1}, w_{2}, w_{3}\right)}$ is given by

$$
\left[\begin{array}{ccl}
1 & \tan \theta+|\sec \theta| & y \sec ^{2} \theta+y|\sec \theta| \tan \theta \\
1 & -\cot \theta+|\csc \theta| & y \csc ^{2} \theta-y|\csc \theta| \cot \theta \\
1 & \tan \theta-|\sec \theta| & y \csc ^{2} \theta-y|\csc \theta| \cot \theta
\end{array}\right]
$$

of which the determinant is $y \sec ^{2}\left(\frac{\theta}{2}\right) \sec ^{2} \theta$. Applying the formula of y and θ of Equation (2.2), we get

$$
\frac{1}{y^{2}}\left|\frac{\partial(x, y, \theta)}{\partial\left(w_{1}, w_{2}, w_{3}\right)}\right| d w_{1} d w_{2} d w_{3}=\frac{d w_{1} d w_{2} d w_{3}}{\left(w_{1}-w_{2}\right)\left(w_{2}-w_{3}\right)\left(w_{3}-w_{1}\right)}
$$

This completes the proof of Theorem 1.1.

3. More on parametrization and fundamental domain

Hopf parametrization

There is another parametrization of $(z, \mathbf{v}) \in \mathrm{T}^{1} \mathbb{H}$, called Hopf parametrization, by two distinct boundary points ξ and η at infinity together with a real number $t \in \mathbb{R}$. Given $(x+y i, \theta) \in \mathrm{T}^{1} \mathbb{H}$, there is a unique bi-infinite parametrized geodesic α of \mathbb{H} such that $\alpha(0)=x+y i$ and $\alpha^{\prime}(0)=\mathbf{v}$.

Let $\xi=\alpha(\infty)$ and $\eta=\alpha(-\infty)$. Let o be the orthogonal projection point of $i \in \mathbb{H}$ onto the geodesic α and t be the real number for which $\alpha(t)=o$.

Under this parametrization $(x+y i, \theta) \leftrightarrow(\xi, \eta, t)$, the similar argument gives

$$
\frac{d x d y d \theta}{y^{2}}=\frac{2 d \xi d \eta d t}{(\eta-\xi)^{2}}
$$

Fundamental domain

For each (z, \mathbf{v}) in $\mathrm{T}^{1} \mathbb{H}$, we can find a neighborhood of (z, \mathbf{v}) which does not contain any other element of the $\operatorname{PSL}(2, \mathbb{Z})$-orbit of (z, \mathbf{v}). This enables us to construct fundamental domains, which contain exactly one representative for the $\operatorname{PSL}(2, \mathbb{Z})$-orbit of every (z, \mathbf{v}) in $\mathrm{T}^{1} \mathbb{H}$.

There are various ways of constructing a strong fundamental domain, but a common choice is the union

$$
\begin{aligned}
\left\{(z, \mathbf{v}): z \in R, \mathbf{v} \in \mathrm{~T}_{z}^{1} \mathbb{H}\right\} & \cup\left\{\left(w_{1}, \mathbf{v}\right) \in \mathrm{T}^{1} \mathbb{H}: 0 \leqslant \arg (\mathbf{v})<\frac{2 \pi}{3}\right\} \\
& \cup\left\{\left(w_{2}, \mathbf{v}\right) \in \mathrm{T}^{1} \mathbb{H}: 0 \leqslant \arg (\mathbf{v})<\pi\right\}
\end{aligned}
$$

for two branched points $w_{1}=\frac{1}{2}+\frac{\sqrt{3} i}{2}$ and $w_{2}=i$ and the region

$$
R=\left\{z \in \mathbb{H}:|z|>1,-\frac{1}{2} \leqslant \operatorname{Re}(z)<\frac{1}{2}\right\} \cup\left\{z \in \mathbb{H}:|z|=1,-\frac{1}{2}<\operatorname{Re}(z)<0\right\}
$$

bounded by the vertical lines $\operatorname{Re}(z)=-\frac{1}{2}$ and $\operatorname{Re}(z)=\frac{1}{2}$ and the circle $|z|=1$. It would be interesting to construct explicitly a fundamental domain for the action of $P S L(2, \mathbb{R})$ on $\left(S^{1}\right)_{\text {pos }}^{3}$.

We remark that the positive characteristic analogue case is attained in [3]. Namely, the author considers $P G L\left(2, \mathbb{F}_{q}[t]\right)$-action on the $(q+1)$-regular tree \mathcal{T} and its fundamental domain as a subset of $\partial_{\infty} \mathcal{T}_{\text {dist }}^{3}$, the set of mutually distinct ordered triple points on $\partial_{\infty} \mathcal{T}$.

References

[1] D. Borthwick, Spectral theory of infinite-area hyperbolic surfaces, second edition, Progress in Mathematics, 318, Birkhäuser/Springer, 2016. https://doi.org/10.1007/978-3-319-33877-4
[2] M. Einsiedler and T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 2011. https://doi. org/10.1007/978-0-85729-021-2
[3] S. Kwon, A fundamental domain for $P G L\left(2, \mathbb{F}_{q}[t]\right) \backslash P G L\left(2, \mathbb{F}_{q}\left(\left(t^{-1}\right)\right)\right)$, Bull. Korean Math. Soc. 57 (2020), no. 6, 1491-1499. https://doi.org/10.4134/BKMS.b200021

Sanghoon Kwon

Department of Mathematics Education
Catholic Kwandong University
Gangneung-si 25601, Korea
Email address: skwon@cku.ac.kr

