DOI QR코드

DOI QR Code

Role of Peptides in Antiviral (COVID-19) Therapy

  • Chelliah, Ramachandran (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Daliri, Eric Banan-Mwine (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Elahi, Fazle (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Yeon, Su-Jung (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Tyagi, Akanksha (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Park, Chae Rin (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Eun Ji (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Jo, kyoung Hee (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University)
  • Received : 2021.08.22
  • Accepted : 2021.09.28
  • Published : 2021.10.30

Abstract

Trends in the developing era to discover and design peptide-based treatments throughout an epidemic infection scenario such as COVID-19 could progress into a more efficient and low-cost therapeutic environment. However, the weakening of proteolysis is one downside of natural peptide drugs. But, peptidomimetics may help resolve this issue. In this review, peptide and peptide-based drug discovery were summarized to target one key entry mechanism of severe coronavirus pulmonary emboli syndrome (SARS-CoV-2), which encompasses the association of the host angiotensin-converting enzyme-2 (ACE2) receptor and viral spike (S) protein. Furthermore, the benefits of proteins, peptides and other possible actions that have been studied for COVID-19 through new peptide-based treatments are discussed in the review. Lastly, an overview of the peptide-based drug therapy environment is comprised of an evolutionary viewpoint, structural properties, operational thresholds, and an explanation of the therapeutic area.

COVID-19와 같은 전염병 감염 시나리오 전반에 걸쳐 펩타이드 기반 치료법을 발견하고 설계하는 개발 시대의 추세는 보다 효율적이고 저렴한 치료 환경으로 발전할 수 있습니다. 결과적으로, 그들의 단백질 분해 약화는 천연펩타이드 약물의 단점 중 하나입니다. 펩티도미메틱스는 이 단점을 해결하는 데 도움이 될 수 있습니다. 이 리뷰에서 펩타이드 및 펩타이드 기반 약물 발견은 숙주 안지오텐신 전환 효소-2(ACE2) 수용체 및 바이러스 스파이크 (S)단백질의 연관성을 포함하는 중증 코로나바이러스 폐색전 증후군(SARS-CoV-2)의 주요 진입 기전 중 하나를 표적으로 요약했습니다. 또한, 펩타이드 기반의 새로운 치료법을 통해 COVID-19에 대해 연구된 단백질, 펩타이드 및 기타 가능한 조치의 이점을 다룹니다. 그리고 펩타이드 기반 약물 치료 환경의 개요는 진화적 관점, 구조적 특성, 작동 한계값 및 치료 영역에 대한 설명으로 구성된다

Keywords

Acknowledgement

Chelliah Ramachandran is grateful for the financial support from National Research Foundation of Korea (NRF) 2018007551 and this work was partially supported (Fazle Elahi) by Korea Research Fellowship (KRF) Program (Grant No: 2020H1D3A1A02081423) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

References

  1. Alqahtani, J.S., Oyelade, T., Aldhahir, A.M., Alghamdi, S.M., Almehmadi, M., Alqahtani, A.S., Quaderi, S., Mandal, S., Hurst, J.R., Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS One, 15, e0233147 (2020). https://doi.org/10.1371/journal.pone.0233147
  2. Johns Hopkins Univ., (2021, September 23). Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Retrieved from https://coronavirus.jhu.edu/map.html
  3. Graham, B.S., Sullivan, N.J., Emerging viral diseases from a vaccinology perspective: preparing for the next pandemic. Nat. immunol., 19, 20-28 (2018). https://doi.org/10.1038/s41590-017-0007-9
  4. Bieganska-Banas, J.M., Makara-Studzinska, M., Coping strategies among nurses during the COVID-19 outbreak. Problemy Pielegniarstwa, 28, 1-11 (2020). https://doi.org/10.5114/ppiel.2020.96088
  5. Goldsmith, C.S., Miller, S.E., Martines, R.B., Bullock, H.A., Zaki, S.R., Electron microscopy of SARS-CoV-2: a challenging task. The Lancet, 395, e99 (2020). https://doi.org/10.1016/s0140-6736(20)31188-0
  6. Sanchis-Gomar, F., Lavie, C.J., Perez-Quilis, C., Henry, B.M., Lippi, G., Angiotensin-converting enzyme 2 and antihypertensives (angiotensin receptor blockers and angiotensin-converting enzyme inhibitors) in coronavirus disease 2019. Mayo Clin. Proc., 95, 1222-1230 (2020). https://doi.org/10.1016/j.mayocp.2020.03.026
  7. Sharma, R.K., Stevens, B.R., Obukhov, A.G., Grant, M.B., Oudit, G.Y., Li, Q., Richards, E.M., Pepine, C.J., Raizada, M.K., ACE2 (Angiotensin-Converting Enzyme 2) in cardiopulmonary diseases: ramifications for the control of SARS-CoV-2. Hypertension, 76, 651-661 (2020). https://doi.org/10.1161/hypertensionaha.120.15595
  8. Outlaw, V.K., Bovier, F.T., Mears, M.C., Cajimat, M.N., Zhu, Y., Lin, M.J., Addetia, A., Lieberman, N.A., Peddu, V., Xie, X., Shi, P.Y., Greninger, A.L., Gellman, S.H., Bente, D.A., Moscona, A., Porotto, M., Inhibition of coronavirus entry in vitro and ex vivo by a lipid-conjugated peptide derived from the sars-cov-2 spike glycoprotein hrc domain. mBio, 11, (2020).
  9. VanPatten, S., He, M., Altiti, A., Cheng, K.F., Ghanem, M.H., Al-Abed, Y., Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Med. Chem., 12, 1647-1656 (2020). https://doi.org/10.4155/fmc-2020-0180
  10. Beniac, D.R., Booth, T.F., 2010. Structural molecular insights into SARS coronavirus cellular attachment, entry and morphogenesis, In Molecular Biology of the SARS-Coronavirus. Springer, Berlin, Heidelberg, pp. 31-43
  11. Zhao, G.P., SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos. Trans. R. Soc. Lond B Biol. Sci., 362, 1063-1081 (2007). https://doi.org/10.1098/rstb.2007.2034
  12. Anand, K.B., Karade, S., Sen, S., Gupta, R.M., SARS-CoV-2: camazotz's curse. Med. J. Armed Forces India, 76, 136-141 (2020). https://doi.org/10.1016/j.mjafi.2020.04.008
  13. Gandhi, L., Rodriguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F., Domine, M., Clingan, P., Hochmair, M.J., Powell, S.F., Cheng, S.Y.S, Bischoff, H.G., Peled, N., Grossi, F., Jennens, R.R., Reck, M., Hui, R., Garon, E.B., Boyer, M., Rubio-Viqueira, B., Novello, S., Kurata, T., Gray, J.E., Vida, J., Wei, Z., Yang, J., Raftopoulos, H., Pietanza, M.C., Garassino, M.C., Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med., 378, 2078-2092 (2018). https://doi.org/10.1056/nejmoa1801005
  14. Zhang, H., Penninger, J.M., Li, Y., Zhong, N., Slutsky, A.S., Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 46, 586-590 (2020). https://doi.org/10.1007/s00134-020-05985-9
  15. Lohi, H., Kujala, M., Makela, S., Lehtonen, E., Kestila, M., Saarialho-Kere, U., Markovich, D., Kere, J., Functional characterization of three novel tissue-specific anion exchangers SLC26A7,-A8, and-A9. J. Biol. Chem., 277, 14246-14254 (2002). https://doi.org/10.1074/jbc.M111802200
  16. Wei, C., Wan, L., Yan, Q., Wang, X., Zhang, J., Yang, X., Zhang, Y., Fan, C., Li, D., Deng, Y., Sun, J., Gong, J., Yang, X., Wang, Y., Wang, X., Li, J., yang, H., Li, H., Zhang, Z., Wang, R., Du, P., Zong, Y., Yin, F., Zhang, W., Wang, N., Peng, Y., Lin, H., Feng, J., Qin, C., Chen, W., Gao, Q., Zhang, R., Cao, Y., Zhong, H., HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat. Metab., 2, 1391-1400 (2020). https://doi.org/10.1038/s42255-020-00324-0
  17. Ye, M., Wysocki, J., Gonzalez-Pacheco, F.R., Salem, M., Evora, K., Garcia-Halpin, L., Poglitsch, M., Schuster, M., Batlle, D., Murine Recombinant Angiotensin-Converting Enzyme 2: Effect on Angiotensin II-Dependent Hypertension and Distinctive Angiotensin-Converting Enzyme 2 Inhibitor Characteristics on Rodent and Human Angiotensin-Converting Enzyme 2. Hypertension, 60, 730-740 (2012). https://doi.org/10.1161/HYPERTENSIONAHA.112.198622
  18. Drozdzal, S., Rosik, J., Lechowicz, K., Machaj, F., Kotfis, K., Ghavami, S., & Los, M. J., FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist. Updat., 100719 (2020). https://doi.org/10.1016/j.drup.2020.100719
  19. Pillaiyar, T., Wendt, L.L., Manickam, M., Easwaran, M., The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med. Res. Rev., 41, 72-135 (2021). https://doi.org/10.1002/med.21724
  20. Banting, F.G., Best, C.H., Collip, J.B., Campbell, W.R., Fletcher, A.A., Pancreatic Extracts in The Treatment of Diabetes Mellitus. Diabetes, 5, 69-71 (1956). https://doi.org/10.2337/diab.5.1.69
  21. Elkinton, J.R., Hunt, A.D., Godfrey, L., McCrory, W.; Rogerson, A.; Stokes, J. Effects of pituitary adrenocorticotropic hormone (ACTH) therapy. JAMA, 141, 1273-1279 (1949) https://doi.org/10.1001/jama.1949.02910180001001
  22. Lau, J.L., Dunn, M.K., Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & medicinal chemistry, 26, 2700-2707 (2018). https://doi.org/10.1016/j.bmc.2017.06.052
  23. Hollenstein, K., de Graaf, C., Bortolato, A., Wang, M.W., Marshall, F.H., Stevens, R.C., Insights into the structure of class B GPCRs. Trends in pharmacological sciences, 35, 12-22 (2014). https://doi.org/10.1016/j.tips.2013.11.001
  24. Agoulnik, A.I., Agoulnik, I.U., Hu, X., Marugan, J., Synthetic non?peptide low molecular weight agonists of the relaxin receptor 1. Br. J. Pharmacol., 174, 977-989 (2017). https://doi.org/10.1111/bph.13656
  25. Mishra, R.K., Shum, A.K., Platanias, L.C., Miller, R.J., Schiltz, G.E., Discovery and characterization of novel small-molecule CXCR4 receptor agonists and antagonists. Sci. Rep., 6, 1-9 (2016). https://doi.org/10.1038/s41598-016-0001-8
  26. Sacks, L.V., Shamsuddin, H.H., Yasinskaya, Y.I., Bouri, K., Lanthier, M.L., Sherman, R.E., Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000-2012. JAMA, 311, 378-384 (2014). https://doi.org/10.1001/jama.2013.282542
  27. Hollenberg, N.K., Williams, G.H., Burger, B., Ishikawa, I., Adams, D.F., Blockade and stimulation of renal, adrenal, and vascular angiotensin II receptors with 1-Sar, 8-Ala angiotensin II in normal man. J. Clin. Invest., 57, 39-46 (1976). https://doi.org/10.1172/JCI108266
  28. Mullard, A., Once-yearly device takes on daily and weekly diabetes drugs. Nat. Biotechnol. 32, 1178 (2014). https://doi.org/10.1038/nbt1214-1178
  29. Camacho, P.M., Petak, S.M., Binkley, N., Clarke, B.L., Harris, S.T., Hurley, D.L., Kleerekoper, M., Lewiecki, E.M., Miller, P.D., Narula, H.S., Pessah-Pollack, R., Tangpricha, V., Wimalawansa, S.J., Watts, N.B., American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis - 2016--Executive Summary. Endocr. Pract., 22, 1111-1118 (2016). https://doi.org/10.4158/EP161435.ESGL
  30. Stupp, R., Hegi, M.E., Gorlia, T., Erridge, S.C., Perry, J., Hong, Y.K., Aldape, K.D., Lhermitte, B., Pietsch, T., Grujicic, D., Steinbach, J.P., Wick, W., Tarnawski, R., Nam, D.H., Hau, P., Weyerbrock, A., Taphoorn, M.J., Shen, C.C., Rao, N., Thurzo, L., Herrlinger, U., Gupra, T., Kortmann, R.D., Adamska, K., McBain, C., Brandes, A.A., Tonn, J.C., Schnell, O., Wiegel, T., Kim, C.Y., Nabors, L.B., Reardon, D.A., van den Bent, M.J., Hicking, C., Markivskyy, A., Picard, M., Wller, M., Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol., 15, 1100-1108 (2014). https://doi.org/10.1016/s1470-2045(14)70379-1
  31. Chang, Y.S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K.H., Olson, K.A., Kesavan, K., Gangurde, P., Mukherjee, A., Baker, T., Darlak, K., Elkin, C., Filipovic, Z., Qureshi, F.Z., Cai, H., Berry, P., Feyfant, E., Shi, X.E., Horstick, J., Annis, D.A., Manning, A.M., Fotouhi, N., Nash, H., Vassilev, L.T., Sawyer, T.K., Stapled α- helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U S A., 110, E3445-E3454 (2013).
  32. Meerovitch, K., Torkildsen, G., Lonsdale, J., Goldfarb, H., Lama, T., Cumberlidge, G., Ousler III, G.W., Safety and efficacy of MIM-D3 ophthalmic solutions in a randomized, placebo-controlled Phase 2 clinical trial in patients with dry eye. Clin. Ophthalmol., 7, 1275-1285 (2013). https://doi.org/10.2147/OPTH.S44688
  33. Birk, A.V., Liu, S., Soong, Y., Mills, W., Singh, P., Warren, J.D., Seshan, S.V., Pardee, J.D., Szeto, H.H., The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol., 24, 1250-1261 (2013). https://doi.org/10.1681/ASN.2012121216
  34. Li, Q., Zhao, Z., Zhou, D., Chen, Y., Hong, W., Cao, L., Yang, J., Zhang, Y., Shi, W., Cao, Z., Wu, Y., Yan, H., Li, W., Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides, 32, 1518-1525 (2011). https://doi.org/10.1016/j.peptides.2011.05.015
  35. Jaiswal, G., Kumar, V., In-silico design of a potential inhibitor of SARS-CoV-2 S protein. PLoS One, 15, e0240004 (2020). https://doi.org/10.1371/journal.pone.0240004
  36. Xia, S., Zhu, Y., Liu, M., Lan, Q., Xu, W., Wu, Y., Ying, T., Liu, S., Shi, Z., Jiang, S., Lu, L., Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol., 17, 765-767 (2020). https://doi.org/10.1038/s41423-020-0374-2
  37. Xu, J., Jia, W., Wang, P., Zhang, S., Shi, X., Wang, X., Zhang, L., Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg. Microbes infect., 8, 841-856 (2019). https://doi.org/10.1080/22221751.2019.1624482
  38. Xia, S., Yan, L., Xu, W., Agrawal, A.S., Algaissi, A., Tseng, C.T.K., Wang, Q., Du, L., Tan, W., Wilson, I.A., Jiang, S., Yang, B., Lu, L., A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv., 5, eaav4580 (2019). https://doi.org/10.1126/sciadv.aav4580
  39. Izzo, C., Grillo, F., Murador, E., Improved method for determination of high-density-lipoprotein cholesterol I. Isolation of high-density lipoproteins by use of polyethylene glycol 6000. Clin. Chem., 27, 371-374 (1981). https://doi.org/10.1093/clinchem/27.3.371
  40. Channappanavar, R., Lu, L., Xia, S., Du, L., Meyerholz, D.K., Perlman, S., Jiang, S., Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. J. Infect. Dis., 212, 1894-1903 (2015). https://doi.org/10.1093/infdis/jiv325
  41. Schutz, D., Ruiz-Blanco, Y.B., Munch, J., Kirchhoff, F., Sanchez-Garcia, E., Muller, J.A., Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv. Drug Deliv. Rev., 167, 47-65 (2020). https://doi.org/10.1016/j.addr.2020.11.007
  42. Baik, M., The mechanism of small molecule viral fusion inhibitors. PhD thesis, University of Alabama at Birmingham, Birmingham, Alabama (2015).
  43. Dawood, A.A., Mutated COVID-19 may foretell a great risk for mankind in the future. New Microbes and New Infections, 35, 100673 (2020). https://doi.org/10.1016/j.nmni.2020.100673
  44. Rathod, S.B., Prajapati, P.B., Punjabi, L.B., Prajapati, K.N., Chauhan, N., Mansuri, M.F., Peptide modelling and screening against human ACE2 and spike glycoprotein RBD of SARS-CoV-2. In silico pharmacol., 8, 1-9 (2020). https://doi.org/10.1007/s40203-020-0053-0
  45. Yang, D., Application of Nanotechnology in the COVID-19 Pandemic. Int J. Nanomedicine, 16, 623-649 (2021). https://doi.org/10.2147/IJN.S296383
  46. Memariani, H., Memariani, M., Therapeutic and prophylactic potential of anti-microbial peptides against coronaviruses. Ir. J. Med. Sci., 189, 1153-1154 (2020). https://doi.org/10.1007/s11845-020-02232-4
  47. Henson, P.M., Bratton, D.L., 2009. Phagocyte-Pathogen Interactions: Macrophages and the Host Responses to Infection, American Society for Microbiology, Washington, D.C, DC, USA, pp. 341-365
  48. Sousa, F.H., Casanova, V., Stevens, C., Barlow, P.G., 2016. Antiviral host defence peptides. Host Defense Peptides and Their Potential as Therapeutic Agents, Springer, Cham, pp. 57-94.
  49. Albar, A.H., Almehdar, H.A., Uversky, V.N., Redwan, E.M., Structural heterogeneity and multifunctionality of lactoferrin. Curr. Protein Pept. Sci., 15, 778-797 (2014). https://doi.org/10.2174/1389203715666140919124530
  50. Smith, S.A., Kotwa, G.J., Immune response to poxvirus infections in various animals. Crit. Rev. Microbiol., 28, 149-185 (2002). https://doi.org/10.1080/1040-840291046722
  51. Hodinka, R. L., Respiratory RNA viruses. Microbiol. Spectr., 4, doi: 10.1128/microbiolspec.DMIH2-0028-2016 (2016).
  52. Wang, H., Chen, Q., Zhou, S., Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev., 47, 4198-4232 (2018). https://doi.org/10.1039/c7cs00399d
  53. El-Subbagh, N.H., Rabie, R., Mahfouz, A.A., Aboelsuod, K.M., Elshabrawy, M.Y., Abdelaleem, H.M., Elhammady, B.E., Abosaleh, W., Salama, L.A., Badreldeen, S., Yasser, M., Elgaml, A., Characteristic Features of Coronavirus Disease-2019 (COVID-19) Pandemic: Attention to the Management and Control in Egypt. Journal of Disaster Research, 16, 70-83 (2021). https://doi.org/10.20965/jdr.2021.p0070
  54. Dayrit, Fabian M., Mary T., Newport, M.D., 2020. The Potential of Coconut Oil as an Effective and Safe Antiviral Agent Against the Novel Coronavirus (nCoV-2019), pp. 1-4.
  55. Sun, B., Jia, L., Liang, B., Chen, Q., Liu, D., Phylogeography, transmission, and viral proteins of Nipah virus. Virol. Sin., 33, 385-393 (2018). https://doi.org/10.1007/s12250-018-0050-1
  56. Zhang, Q., Wang, Y., Qi, C., Shen, L., Li, J., Clinical trial analysis of 2019?nCoV therapy registered in China. J. Med. Virol., 92, 540-545 (2020). https://doi.org/10.1002/jmv.25733
  57. Abbara, A., Jayasena, C.N., Christopoulos, G., Narayanaswamy, S., Izzi-Engbeaya, C., Nijher, G.M.K., Comninos, A.N., Peters, D., Buckley, A., Ratnasabapathy, R., Prague, J.K., Salim, R., Lavery, S.A., Bloom, S.R., Szigeti, M., Ashby, D.A., Trew, G.H., Dhillo, W.S., Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. J. Clin. Endocrinol. Metab., 100, 3322-3331 (2015). https://doi.org/10.1210/jc.2015-2332
  58. Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schaberle, T.F., Hughes, D.E., Epstein, S., Jones, M., Lazardes, L., Steadman, V.A., Cohen, D.R., Felix, C.R., Fetterman, K.A., Millett, W.P., Nitti, A.G., Zullo, A.M., Chen, C., Lewis, K., A new antibiotic kills pathogens without detectable resistance. Nature, 517, 455-459 (2015). https://doi.org/10.1038/nature14098
  59. Motley, J.L., Stamps, B.W., Mitchell, C.A., Thompson, A.T., Cross, J., You, J., Powell, D.R., Stevenson, B.S., Cichewicz, R.H., Opportunistic sampling of roadkill as an entry point to accessing natural products assembled by bacteria associated with non-anthropoidal mammalian microbiomes. J. Nat. Prod., 80, 598-608 (2017). https://doi.org/10.1021/acs.jnatprod.6b00772
  60. Lavergne, V., Harliwong, I., Jones, A., Miller, D., Taft, R.J., Alewood, P.F., Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. PNAS, 112, E3782-E3791 (2015).
  61. Romere, C., Duerrschmid, C., Bournat, J., Constable, P., Jain, M., Xia, F., Saha, P.K., Del Solar, M., Zhu, B., York, B., Sarkar, P., Rendon, D.A., Gaber, M.W., LeMaire, S.A., Coselli, J.S., Milewicz, D.M., Sutton, V.R., Butte, N.F., Moore, D.D., Chopra, A.R., Asprosin, a fasting-induced glucogenic protein hormone. Cell, 165, 566-579 (2016). https://doi.org/10.1016/j.cell.2016.02.063
  62. Walther, A., Riehemann, K., Gerke, V., A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. cell, 5, 831-840 (2000). https://doi.org/10.1016/S1097-2765(00)80323-8
  63. Figshare, (2021, September 23). Rapid multiplication of COVID Virus. Retrieved from https://figshare.com/s/1fcd33018c5cfd7e11ee