DOI QR코드

DOI QR Code

Generation and Fates of Supernumerary Centrioles in Dividing Cells

  • Shin, Byungho (Department of Biological Sciences, Seoul National University) ;
  • Kim, Myung Se (Department of Biological Sciences, Seoul National University) ;
  • Lee, Yejoo (Department of Biological Sciences, Seoul National University) ;
  • Jung, Gee In (Department of Biological Sciences, Seoul National University) ;
  • Rhee, Kunsoo (Department of Biological Sciences, Seoul National University)
  • 투고 : 2021.08.23
  • 심사 : 2021.09.30
  • 발행 : 2021.10.31

초록

The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C22002726).

참고문헌

  1. Antao, N.V., Marcet-Ortega, M., Cifani, P., Kentsis, A., and Foley, E.A. (2019). A cancer-associated missense mutation in PP2A-Aα increases centrosome clustering during mitosis. iScience 19, 74-82. https://doi.org/10.1016/j.isci.2019.07.018
  2. Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., and Brinkley, B.R. (1995). Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105-115. https://doi.org/10.1083/jcb.130.1.105
  3. Basto, R., Brunk, K., Vinadogrova, T., Peel, N., Franz, A., Khodjakov, A., and Raff, J.W. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042. https://doi.org/10.1016/j.cell.2008.05.039
  4. Baudoin, N.C., Nicholson, J.M., Soto, K., Martin, O., Chen, J., and Cimini, D. (2020). Asymmetric clustering of centrosomes defines the early evolution of tetraploid cells. Elife 9, e54565. https://doi.org/10.7554/eLife.54565
  5. Bettencourt-Dias, M., Rodrigues-Martins, A., Carpenter, L., Riparbelli, M., Lehmann, L., Gatt, M.K., Carmo, N., Balloux, F., Callaini, G., and Glover, D.M. (2005). SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207. https://doi.org/10.1016/j.cub.2005.11.042
  6. Burigotto, M., Mattivi, A., Migliorati, D., Magnani, G., Valentini, C., Roccuzzo, M., Offterdinger, M., Pizzato, M., Schmidt, A., Villunger, A., et al. (2021). Centriolar distal appendages activate the centrosomePIDDosome-p53 signalling axis via ANKRD26. EMBO J. 40, e104844.
  7. Cabral, G., Sans, S.S., Cowan, C.R., and Dammermann, A. (2013). Multiple mechanisms contribute to centriole separation in C. elegans. Curr. Biol. 23, 1380-1387. https://doi.org/10.1016/j.cub.2013.06.043
  8. Castellanos, E., Dominguez, P., and Gonzalez, C. (2008). Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209-1214. https://doi.org/10.1016/j.cub.2008.07.029
  9. Chan, J.Y. (2011). A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122-1144. https://doi.org/10.7150/ijbs.7.1122
  10. Chang, J., Cizmecioglu, O., Hoffmann, I., and Rhee, K. (2010). PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 29, 2395-2406. https://doi.org/10.1038/emboj.2010.118
  11. Chiba, S., Okuda, M., Mussman, J.G., and Fukasawa, K. (2000). Genomic convergence and suppression of centrosome hyperamplification in primary p53-/- cells in prolonged culture. Exp. Cell Res. 258, 310-321. https://doi.org/10.1006/excr.2000.4916
  12. Coelho, P.A., Bury, L., Shahbazi, M.N., Liakath-Ali, K., Tate, P.H., Wormald, S., Hindley, C.J., Huch, M., Archer, J., Skarnes, W.C., et al. (2015). Overexpression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol. 5, 150209. https://doi.org/10.1098/rsob.150209
  13. Davoli, T. and de Lange, T. (2011). The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585-610. https://doi.org/10.1146/annurev-cellbio-092910-154234
  14. Dikovskaya, D., Schiffmann, D., Newton, I.P., Oakley, A., Kroboth, K., Sansom, O., Jamieson, T.J., Meniel, V., Clarke, A., and Nathke, I.S. (2007). Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J. Cell Biol. 176, 183-195. https://doi.org/10.1083/jcb.200610099
  15. Drosopoulos, K., Tang, C., Chao, W.C.H., and Linardopoulos, S. (2014). APC/C is an essential regulator of centrosome clustering. Nat. Commun. 5, 3686. https://doi.org/10.1038/ncomms4686
  16. Dzhindzhev, N.S., Tzolovsky, G., Lipinszki, Z., Schneider, S., Lattao, R., Fu, J., Debski, J., Dadlez, M., and Glover, D.M. (2014). Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526-2532. https://doi.org/10.1016/j.cub.2014.08.061
  17. Edgar, B.A. and Orr-Weaver, T.L. (2001). Endoreplication cell cycles: more for less. Cell 105, 297-306. https://doi.org/10.1016/S0092-8674(01)00334-8
  18. Fan, G., Sun, L., Shan, P., Zhang, X., Huan, J., Zhang, X., Li, D., Wang, T., Wei, T., Zhang, X., et al. (2015). Loss of KLF14 triggers centrosome amplification and tumorigenesis. Nat. Commun. 6, 8450. https://doi.org/10.1038/ncomms9450
  19. Fava, L.L., Schuler, F., Sladky, V., Haschka, M.D., Soratroi, C., Eiterer, L., Demetz, E., Weiss, G., Geley, S., Nigg, E.A., et al. (2017). The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 31, 34-45. https://doi.org/10.1101/gad.289728.116
  20. Fu, J., Lipinszki, Z., Rangone, H., Min, M., Mykura, C., Chao-Chu, J., Schneider, S., Dzhindzhev, N.S., Gottardo, M., Riparbelli, M.G., et al. (2016). Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18, 87-99. https://doi.org/10.1038/ncb3274
  21. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., and Vande Woude, G.F. (1996). Abnormal centrosome amplification in the absence of p53. Science 271, 1744-1747. https://doi.org/10.1126/science.271.5256.1744
  22. Galipeau, P.C., Cowan, D.S., Sanchez, C.A., Barrett, M.T., Emond, M.J., Levine, D.S., Rabinovitch, P.S., and Reid, B.J. (1996). 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl. Acad. Sci. U. S. A. 93, 7081-7084. https://doi.org/10.1073/pnas.93.14.7081
  23. Galofre, C., Asensio, E., Ubach, M., Torres, I.M., Quintanilla, I., Castells, A., and Camps, J. (2020). Centrosome reduction in newly-generated tetraploid cancer cells obtained by separase depletion. Sci. Rep. 10, 9152. https://doi.org/10.1038/s41598-020-65975-1
  24. Ganem, N.J., Cornils, H., Chiu, S.Y., O'Rourke, K.P., Arnaud, J., Yimlamai, D., Thery, M., Camargo, F.D., and Pellman, D. (2014). Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848. https://doi.org/10.1016/j.cell.2014.06.029
  25. Ganem, N.J., Godinho, S.A., and Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282. https://doi.org/10.1038/nature08136
  26. Ganier, O., Schnerch, D., Oertle, P., Lim, R.Y., Plodinec, M., and Nigg, E.A. (2018). Structural centrosome aberrations promote non-cell-autonomous invasiveness. EMBO J. 37, e98576. https://doi.org/10.15252/embj.201798576
  27. Godinho, S.A. and Pellman, D. (2014). Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130467. https://doi.org/10.1098/rstb.2013.0467
  28. Godinho, S.A., Picone, R., Burute, M., Dagher, R., Su, Y., Leung, C.T., Polyak, K., Brugge, J.S., Thery, M., and Pellman, D. (2014). Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167-171. https://doi.org/10.1038/nature13277
  29. Habedanck, R., Stierhof, Y.D., Wilkinson, C.J., and Nigg, E.A. (2005). The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140-1146. https://doi.org/10.1038/ncb1320
  30. Hirono, M. (2014). Cartwheel assembly. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130458. https://doi.org/10.1098/rstb.2013.0458
  31. Holland, A.J. and Cleveland, D.W. (2009). Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478-487. https://doi.org/10.1038/nrm2718
  32. Inanc, B., Dodson, H., and Morrison, C.G. (2010). A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol. Biol. Cell 21, 3866-3877. https://doi.org/10.1091/mbc.E10-02-0124
  33. Jung, G.I. and Rhee, K. (2021). Triple deletion of TP53, PCNT, and CEP215 promotes centriole amplification in the M phase. Cell Cycle 20, 1500-1517. https://doi.org/10.1080/15384101.2021.1950386
  34. Kim, J., Kim, J., and Rhee, K. (2019). PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J. Cell Sci. 132, jcs225789. https://doi.org/10.1242/jcs.225789
  35. Kim, J., Lee, K., and Rhee, K. (2015). PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat. Commun. 6, 10076. https://doi.org/10.1038/ncomms10076
  36. Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Habedanck, R., Stierhof, Y.D., and Nigg, E.A. (2007). Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190-202. https://doi.org/10.1016/j.devcel.2007.07.002
  37. Kohlmaier, G., Loncarek, J., Meng, X., McEwen, B.F., Mogensen, M.M., Spektor, A., Dynlacht, B.D., Khodjakov, A., and Gonczy, P. (2009). Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19, 1012-1018. https://doi.org/10.1016/j.cub.2009.05.018
  38. Kong, D., Sahabandu, N., Sullenberger, C., Vasquez-Limeta, A., Luvsanjav, D., Lukasik, K., and Loncarek, J. (2020). Prolonged mitosis results in structurally aberrant and over-elongated centrioles. J. Cell Biol. 219, e201910019. https://doi.org/10.1083/jcb.201910019
  39. Krzywicka-Racka, A. and Sluder, G. (2011). Repeated cleavage failure does not establish centrosome amplification in untransformed human cells. J. Cell Biol. 194, 199-207. https://doi.org/10.1083/jcb.201101073
  40. Kulukian, A., Holland, A.J., Vitre, B., Naik, S., Cleveland, D.W., and Fuchs, E. (2015). Epidermal development, growth control, and homeostasis in the face of centrosome amplification. Proc. Natl. Acad. Sci. U. S. A. 112, E6311-E6320.
  41. Kuznetsova, A.Y., Seget, K., Moeller, G.K., de Pagter, M.S., de Roos, J.A., Durrbaum, M., Kuffer, C., Muller, S., Zaman, G.J., Kloosterman, W.P., et al. (2015). Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14, 2810-2820. https://doi.org/10.1080/15384101.2015.1068482
  42. Kwon, M., Bagonis, M., Danuser, G., and Pellman, D. (2015). Direct microtubule-binding by Myosin-10 orients centrosomes toward retraction fibers and subcortical actin clouds. Dev. Cell 34, 323-337. https://doi.org/10.1016/j.devcel.2015.06.013
  43. Kwon, M., Godinho, S.A., Chandhok, N.S., Ganem, N.J., Azioune, A., Thery, M., and Pellman, D. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189-2203. https://doi.org/10.1101/gad.1700908
  44. Lambrus, B.G., Daggubati, V., Uetake, Y., Scott, P.M., Clutario, K.M., Sluder, G., and Holland, A.J. (2016). A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214, 143-153. https://doi.org/10.1083/jcb.201604054
  45. Lambrus, B.G. and Holland, A.J. (2017). A new mode of mitotic surveillance. Trends Cell Biol. 27, 314-321. https://doi.org/10.1016/j.tcb.2017.01.004
  46. Larsson, L.I., Bjerregaard, B., and Talts, J.F. (2008). Cell fusions in mammals. Histochem. Cell Biol. 129, 551-561. https://doi.org/10.1007/s00418-008-0411-1
  47. Leber, B., Maier, B., Fuchs, F., Chi, J., Riffel, P., Anderhub, S., Wagner, L., Ho, A.D., Salisbury, J.L., Boutros, M., et al. (2010). Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med. 2, 33ra38. https://doi.org/10.1126/scitranslmed.3000915
  48. Lee, K. and Rhee, K. (2012). Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11, 2476-2485. https://doi.org/10.4161/cc.20878
  49. Levine, M.S., Bakker, B., Boeckx, B., Moyett, J., Lu, J., Vitre, B., Spierings, D.C., Lansdorp, P.M., Cleveland, D.W., Lambrechts, D., et al. (2017). Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev. Cell 40, 313-322.e5. https://doi.org/10.1016/j.devcel.2016.12.022
  50. Liao, Z., Zhang, H., Fan, P., Huang, Q., Dong, K., Qi, Y., Song, J., Chen, L., Liang, H., Chen, X., et al. (2019). High PLK4 expression promotes tumor progression and induces epithelial-mesenchymal transition by regulating the Wnt/β-catenin signaling pathway in colorectal cancer. Int. J. Oncol. 54, 479-490.
  51. Loncarek, J., Hergert, P., and Khodjakov, A. (2010). Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr. Biol. 20, 1277-1282. https://doi.org/10.1016/j.cub.2010.05.050
  52. Marteil, G., Guerrero, A., Vieira, A.F., de Almeida, B.P., Machado, P., Mendonca, S., Mesquita, M., Villarreal, B., Fonseca, I., Francia, M.E., et al. (2018). Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun. 9, 1258. https://doi.org/10.1038/s41467-018-03641-x
  53. Marthiens, V., Rujano, M.A., Pennetier, C., Tessier, S., Paul-Gilloteaux, P., and Basto, R. (2013). Centrosome amplification causes microcephaly. Nat. Cell Biol. 15, 731-740. https://doi.org/10.1038/ncb2746
  54. Matsuo, K., Ohsumi, K., Iwabuchi, M., Kawamata, T., Ono, Y., and Takahashi, M. (2012). Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr. Biol. 22, 915-921. https://doi.org/10.1016/j.cub.2012.03.048
  55. McCoy, R.C., Demko, Z., Ryan, A., Banjevic, M., Hill, M., Sigurjonssen, S., Robinowitz, M., Fraser, H., and Petrov, D.A. (2015). Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science 348, 235-238. https://doi.org/10.1126/science.aaa3337
  56. Mikeladze-Dvali, T., von Tobel, L., Strnad, P., Knott, G., Leonhardt, H., Schermelleh, L., and Gonczy, P. (2012). Analysis of centriole elimination during C. elegans oogenesis. Development 139, 1670-1679. https://doi.org/10.1242/dev.075440
  57. Nigg, E.A. (2006). Origins and consequences of centrosome abberations in human cancers. Int. J. Cancer 119, 2717-2723. https://doi.org/10.1002/ijc.22245
  58. Nigg, E.A. and Holland, A.J. (2018). Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol. 19, 297-312. https://doi.org/10.1038/nrm.2017.127
  59. Nigg, E.A. and Raff, J.W. (2009). Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663-678. https://doi.org/10.1016/j.cell.2009.10.036
  60. O'Connell, K.F., Caron, C., Kopish, K.R., Hurd, D.D., Kemphues, K.J., Li, Y., and White, J.G. (2001). The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558. https://doi.org/10.1016/S0092-8674(01)00338-5
  61. Ohta, M., Ashikawa, T., Nozaki, Y., Kozuka-Hata, H., Goto, H., Inagaki, M., Oyama, M., and Kitagawa, D. (2014). Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267. https://doi.org/10.1038/ncomms6267
  62. Olaharski, A.J., Sotelo, R., Solorza-Luna, G., Gonsebatt, M.E., Guzman, P., Mohar, A., and Eastmond, D.A. (2006). Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27, 337-343. https://doi.org/10.1093/carcin/bgi218
  63. Pihan, G.A., Wallace, J., Zhou, Y., and Doxsey, S.J. (2003). Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398-1404.
  64. Potapova, T.A., Seidel, C.W., Box, A.C., Rancati, G., and Li, R. (2016). Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53. Mol. Biol. Cell 27, 3065-3084. https://doi.org/10.1091/mbc.E16-05-0268
  65. Quintyne, N.J., Reing, J.E., Hoffelder, D.R., Gollin, S.M., and Saunders, W.S. (2005). Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127-129. https://doi.org/10.1126/science.1104905
  66. Raff, J.W. and Basto, R. (2017). Centrosome amplification and cancer: a question of sufficiency. Dev. Cell 40, 217-218. https://doi.org/10.1016/j.devcel.2017.01.009
  67. Reider, C.L. (2011). Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosome Res. 19, 291-306. https://doi.org/10.1007/s10577-010-9178-z
  68. Sabino, D., Gogendeau, D., Gambarotto, D., Nano, M., Pennetier, C., Dingli, F., Arras, G., Loew, D., and Basto, R. (2015). Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr. Biol. 25, 879-889. https://doi.org/10.1016/j.cub.2015.01.066
  69. Sala, R., Farrell, K.C., and Stearns, T. (2020). Growth disadvantage associated with centrosome amplification drives population-level centriole number homeostasis. Mol. Biol. Cell 31, 2646-2656. https://doi.org/10.1091/mbc.e19-04-0195
  70. Schmidt, T.I., Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Lavoie, S.B., Stierhof, Y.D., and Nigg, E.A. (2009). Control of centriole length by CPAP and CP110. Curr. Biol. 19, 1005-1011. https://doi.org/10.1016/j.cub.2009.05.016
  71. Schnerch, D. and Nigg, E.A. (2016). Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 35, 2711-2722. https://doi.org/10.1038/onc.2015.332
  72. Seo, M.Y., Jang, W., and Rhee, K. (2015). Integrity of the pericentriolar material is essential for maintaining centriole association during M phase. PLoS One 10, e0138905. https://doi.org/10.1371/journal.pone.0138905
  73. Sercin, O., Larsimont, J.C., Karambelas, A.E., Marthiens, V., Moers, V., Boeckx, B., Le Mercier, M., Lambrechts, D., Basto, R., and Blanpain, C. (2016). Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat. Cell Biol. 18, 100-110. https://doi.org/10.1038/ncb3270
  74. Shukla, A., Kong, D., Sharma, M., Magidson, V., and Loncarek, J. (2015). Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation. Nat. Commun. 6, 8077. https://doi.org/10.1038/ncomms9077
  75. Sullenberger, C., Vasquez-Limeta, A., Kong, D., and Loncarek, J. (2020). With age comes maturity: biochemical and structural transformation of a human centriole in the making. Cells 9, 1429. https://doi.org/10.3390/cells9061429
  76. Tsou, M.F. and Stearns, T. (2006). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947-951. https://doi.org/10.1038/nature04985
  77. Tsuchiya, Y., Yoshiba, S., Gupta, A., Watanabe, K., and Kitagawa, D. (2016). Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat. Commun. 7, 12567. https://doi.org/10.1038/ncomms12567
  78. Vitre, B., Holland, A.J., Kulukian, A., Shoshani, O., Hirai, M., Wang, Y., Maldonado, M., Cho, T., Boubaker, J., Swing, D.A., et al. (2015). Chronic centrosome amplification without tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 112, E6321-E6330.
  79. Wang, W.J., Soni, R.K., Uryu, K., and Tsou, M.F. (2011). The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell Biol. 193, 727-739. https://doi.org/10.1083/jcb.201101109
  80. Watanabe, Y., Honda, S., Konishi, A., Arakawa, S., Murohashi, M., Yamaguchi, H., Torii, S., Tanabe, M., Tanaka, S., Warabi, E., et al. (2016). Autophagy controls centrosome number by degrading Cep63. Nat. Commun. 7, 13508. https://doi.org/10.1038/ncomms13508
  81. Wong, C. and Stearns, T. (2003). Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat. Cell Biol. 5, 539-544. https://doi.org/10.1038/ncb993
  82. Wu, Q., Yu, X., Liu, L., Sun, S., and Sun, S. (2021). Centrosome-phagy: implications for human diseases. Cell Biosci. 11, 49. https://doi.org/10.1186/s13578-021-00557-w
  83. Zack, T.I., Schumacher, S.E., Carter, S.L., Cherniack, A.D., Saksena, G., Tabak, B., Lawrence, M.S., Zhsng, C.Z., Wala, J., Mermel, C.H., et al. (2013). Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134-1140. https://doi.org/10.1038/ng.2760