DOI QR코드

DOI QR Code

GIS 네트워크 분석을 이용한 2018년 골재의 수요-공급과 유통 해석

GIS-based Network Analysis for the Understanding of Aggregate Resources Supply-demand and Distribution in 2018

  • 이진영 (한국지질자원연구원 지질연구센터) ;
  • 홍세선 (한국지질자원연구원 지질연구센터)
  • Lee, Jin-Young (Geologic Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Hong, Sei Sun (Geologic Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2021.09.07
  • 심사 : 2021.10.06
  • 발행 : 2021.10.29

초록

골재의 생산과 공급에 대한 공간정보를 기반으로 교통 네트워크를 이용하여 골재 공급 운반거리분석, 골재 공급지역 분석, 골재 공급의 위치-할당 시나리오 분석을 수행하였으며, 골재 수급 특성과 골재 유통현황을 해석하였다. 그 결과 골재 공급 기업을 중심으로 골재의 평균 운반거리가 평균 6 km이며, 모래의 경우 평균 7 km 자갈의 경우 평균 10 km 범위에서 수요지에 도달하는것으로나타났다. 특히서비스지역분석결과수도권은약 92%, 부산과울산, 경남 85%, 대전, 세종과충남이 90% 이상으로나타났다. 이러한 결과는 골재의 수요-공급에 대한 기초자료를 정량적으로 해석하는데 중요한 의미가 있으며, 골재 기본계획 수립에 필요한 골재 공급지역에 대한 광역적이고 정량적인 분석의 가능성을 제시한다. 입지-배분 시나리오에 의해 평가된 결과는 전국을 현재 골재를 소규모로 공급하는 700 여개의 기업들 보다 적은 200 개 미만의 대규모 채석량을 가진 기업을 통해 서비스 공급의 가능성을 보여준다. 따라서 골재의 유통 측면에서 골재 공급 서비스의 밀도가 높은 지역과 낮은 지역은 적절한 시장형성을 위한 정책적인 접근이 필요하고, 전국의 골재 수급 분석을 통해 지역적 배분 및 재평가의 필요성을 제안하였다. 더 나아가 골재 시장에 대한 수요-공급 네트워크 분석은 골재 산업뿐 아니라 관련 산업에 대한 중장기 정책 수립을 위한 추가적인 연구가 진행될 필요가 있다.

Based on the supply location, demand location, and transportation network, aggregate supply-demand characteristics and aggregate distribution status were analyzed from the results of the closest distance, service areas, and location-allocation scenarios using GIS network analysis. As a result, it was found that the average transport distance of aggregates from the supplier was 6 km on average, the average range of 7 km for sand, and 10 km for gravel was found to reach the destination. In particular, the simulated service area covers about 92% in Seoul-Gyeonggi Province, 85% in Busan-Ulsan-Gyeongnam Province, and more than 90% in Daejeon-Sejong-Chungnam Province. These results have a significant implication in quantitatively interpreting primary data on aggregate supply-demand. Furthermore, these results suggest the possibility of a wide-area quantitative analysis of aggregate supply regions necessary for establishing a basic aggregate plan. The results also evaluated by the site-allocation scenario show that aggregate supply may be possible through companies less than 200 with large-amounts quarries, which is the 700 companies currently supplying small amounts of aggregates on the country. Therefore, in terms of distribution of aggregates, a policy approach is needed to form an appropriate market for regions with high and low density of aggregate supply services, and the necessity of regional distribution and re-evaluation is suggested through an aggregate supply analysis demand across the country. Furthermore, in analyzing the supply-demand network for the aggregate market, additional research is needed to establish long-term policies for the aggregate industry and related industries.

키워드

과제정보

이 연구는 한국지질자원연구원에서 수행하고 있는 국토교통부 "2021년 골재자원조사 및 관리사업(IP2021-006)"의 지원으로 수행되었습니다. 또한 논문에 대한 세심한 검토와 제안을 해주신 심사위원 분들게 감사드립니다.

참고문헌

  1. An, Y.-U., Leem, Y. and Lee, S.H. (2020) Spatial Equality of Firefighting Service in Daejeon Metropolitan City. The Journal of the Korea Contents Association, v.20, p.560-571, doi: 10.5392/JKCA.2020.20.03.560.
  2. Hong, H. and Lah. T.J. (2020) A GIS Analysis on the Equity and Efficiency of the Disaster Evacuation Facilities Locations: The Case of Civil Defense Evacuation Facilities in Busan. The Korean Journal of Local Government Studies, v.24, no.3, p.125-144. doi: http://dx.doi.org/10.20484/klog.24.3.6
  3. Hong, S.S., Kim, J.Y. and Lee, J.-Y. (2015) Trends of Supply and Demand of Aggregate in Korea (I). The Journal of the Petrological Society of Korea, v.24, p.253-272. doi: https://doi.org/10.7854/JPSK.2015.24.3.253.
  4. Hong, S.S. and Lee, J.-Y. (2020) Analysis of 2019 Domestic Aggregate Production in Korea (I). The Korean Society of Economic and Environmental Geology, v.53, p.755-769. doi: https://doi.org/10.9719/EEG.2020.53.6.755
  5. Jaeger, W.K. (2006) The hidden costs of relocating sand and gravel mines. Resources Policy, v.31, p.146-164. doi: https://doi.org/10.1016/j.resourpol.2006.12.003.
  6. Koo, S. and Yoo, H.H. (2012) An Analysis of Fire Area in Jinju City Based on Fire Mobilization Time. Journal of Korean Society for Geospatial Information System, v.20, p.127-134. doi: 10.7319/KOGSIS.2012.20.4.127.
  7. Ministry of Land, Infrastructure and Transport(MOLIT) (2013) The 5th Basic plan for supply and demand of Aggregate(2014~2018), 25p. https://www.agris.go.kr/.
  8. Ministry of Land, Infrastructure and Transport(MOLIT) (2018) The 6th Basic plan for supply and demand of Aggregate (2019~2023), 22p. https://www.agris.go.kr/.
  9. Ministry of Land, Infrastructure and Transport(MOLIT) (2019) The annual plan for supply and demand of Aggregate, 39p. https://www.agris.go.kr/.
  10. Pavesi, F.C., Richiedei, A. and Pezzagno, M. (2021) Advanced Modelling Tools to Support Planning for Sand/Gravel Quarries. Sustainability, v.13, p.6380. https://doi.org/10.3390/su13116380
  11. Poulin, R., Pakalnis, R.C. and Sinding, K. (1994) Aggregate resources: Production and environmental constraints. Environmental Geology, v.23, p.221-227. doi: 10.1007/BF00771792.
  12. Prikryl, R., Torok, A., Theodoridou, M., Gomez-Heras, M. and Miskovsky, K. (2016) Geomaterials in construction and their sustainability: understanding their role in modern society. Geological Society, London, Special Publications, v.416, p.1-22. doi: 10.1144/SP416.21.
  13. Robinson, G.R. and Kapo, K.E. (2004) A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features. Resources, Conservation and Recycling, v.42, p.351-365. doi: https://doi.org/10.1016/j.resconrec.2004.04.009.
  14. Sverdrup, H.U., Koca, D. and Schlyter, P. (2017) A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model. BioPhysical Economics and Resource Quality, v.2, p.8. doi: 10.1007/s41247-017-0023-2.
  15. Torres, A., Simoni, M.U., Keiding, J.K., Muller, D.B., zu Ermgassen, S.O.S.E., Liu, J., Jaeger, J.A.G., Winter, M. and Lambin, E.F. (2021) Sustainability of the global sand system in the Anthropocene. One Earth, v.4, p.639-650. doi: https://doi.org/10.1016/j.oneear.2021.04.011.
  16. Yeon, K. H., Hwang, H.-Y. and Hong, E.-D. (2014) An Analysis on 119 Safety Center depending on the Distribution of Fire Occurrence in Chungju-Cheongwon City. Journal of Korean Society of Hazard Mitigation, v.14, no.6, p.289-296. doi: https://doi.org/10.9798/kosham.2014.14.6.289.