DOI QR코드

DOI QR Code

AR-mTOR-SRF Axis Regulates HMMR Expression in Human Prostate Cancer Cells

  • Sun, You (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Li, Zewu (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Song, Kyung (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
  • 투고 : 2021.02.27
  • 심사 : 2021.05.16
  • 발행 : 2021.11.01

초록

The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2018R1D1A1B07050063).

참고문헌

  1. Aryal, P., Kim, K., Park, P. H., Ham, S., Cho, J. and Song, K. (2014) Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells. FEBS J. 281, 4644-4658. https://doi.org/10.1111/febs.12969
  2. Assmann, V., Gillett, C. E., Poulsom, R., Ryder, K., Hart, I. R. and Hanby, A. M. (2001) The pattern of expression of the microtubule-binding protein RHAMM/IHABP in mammary carcinoma suggests a role in the invasive behaviour of tumour cells. J. Pathol. 195, 191-196. https://doi.org/10.1002/path.941
  3. Assmann, V., Jenkinson, D., Marshall, J. F. and Hart, I. R. (1999) The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J. Cell Sci. 112, 3943-3954. https://doi.org/10.1242/jcs.112.22.3943
  4. Augustin, F., Fiegl, M., Schmid, T., Pomme, G., Sterlacci, W. and Tzankov, A. (2015) Receptor for hyaluronic acid-mediated motility (RHAMM, CD168) expression is prognostically important in both nodal negative and nodal positive large cell lung cancer. J. Clin. Pathol. 68, 368-373. https://doi.org/10.1136/jclinpath-2014-202819
  5. Benitez, A., Yates, T. J., Lopez, L. E., Cerwinka, W. H., Bakkar, A. and Lokeshwar, V. B. (2011) Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res. 71, 4085-4095. https://doi.org/10.1158/0008-5472.CAN-10-4610
  6. Chang, K. H., Li, R., Papari-Zareei, M., Watumull, L., Zhao, Y. D., Auchus, R. J. and Sharifi, N. (2011) Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 108, 13728-13733. https://doi.org/10.1073/pnas.1107898108
  7. Chen, Y. and Zhou, X. (2020) Research progress of mTOR inhibitors. Eur. J. Med. Chem. 208, 112820. https://doi.org/10.1016/j.ejmech.2020.112820
  8. Fu, W. and Hall, M. N. (2020) Regulation of mTORC2 signaling. Genes 11, 1045. https://doi.org/10.3390/genes11091045
  9. Gust, K. M., Hofer, M. D., Perner, S. R., Kim, R., Chinnaiyan, A. M., Varambally, S., Moller, P., Rinnab, L., Rubin, M. A., Greiner, J., Schmitt, M., Kuefer, R. and Ringhoffer, M. (2009) RHAMM (CD168) is overexpressed at the protein level and may constitute an immunogenic antigen in advanced prostate cancer disease. Neoplasia 11, 956-963. https://doi.org/10.1593/neo.09694
  10. Hatano, H., Shigeishi, H., Kudo, Y., Higashikawa, K., Tobiume, K., Takata, T. and Kamata, N. (2011) RHAMM/ERK interaction induces proliferative activities of cementifying fibroma cells through a mechanism based on the CD44-EGFR. Lab. Invest. 91, 379-391. https://doi.org/10.1038/labinvest.2010.176
  11. Joukov, V., Groen, A. C., Prokhorova, T., Gerson, R., White, E., Rodriguez, A., Walter, J. C. and Livingston, D. M. (2006) The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127, 539-552. https://doi.org/10.1016/j.cell.2006.08.053
  12. Kirby, M., Hirst, C. and Crawford, E. D. (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract. 65, 1180-1192. https://doi.org/10.1111/j.1742-1241.2011.02799.x
  13. Koelzer, V. H., Huber, B., Mele, V., Iezzi, G., Trippel, M., Karamitopoulou, E., Zlobec, I. and Lugli, A. (2015) Expression of the hyaluronanmediated motility receptor RHAMM in tumor budding cells identifies aggressive colorectal cancers. Hum. Pathol. 46, 1573-1581. https://doi.org/10.1016/j.humpath.2015.07.010
  14. Korkes, F., de Castro, M. G., de Cassio Zequi, S., Nardi, L., Del Giglio, A. and de Lima Pompeo, A. C. (2014) Hyaluronan-mediated motility receptor (RHAMM) immunohistochemical expression and androgen deprivation in normal peritumoral, hyperplasic and neoplastic prostate tissue. BJU Int. 113, 822-829. https://doi.org/10.1111/bju.12339
  15. Kouvidi, K., Berdiaki, A., Nikitovic, D., Katonis, P., Afratis, N., Hascall, V. C., Karamanos, N. K. and Tzanakakis, G. N. (2011) Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J. Biol. Chem. 286, 38509-38520. https://doi.org/10.1074/jbc.M111.275875
  16. Lin, S. L., Chang, D., Chiang, A. and Ying, S. Y. (2008) Androgen receptor regulates CD168 expression and signaling in prostate cancer. Carcinogenesis 29, 282-290. https://doi.org/10.1093/carcin/bgm259
  17. Lin, S. L., Chang, D. and Ying, S. Y. (2007) Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 28, 310-320. https://doi.org/10.1093/carcin/bgl134
  18. Liu, Q., Wang, J., Kang, S. A., Thoreen, C. C., Hur, W., Ahmed, T., Sabatini, D. M. and Gray, N. S. (2011) Discovery of 9-(6-aminopyridin3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J. Med. Chem. 54, 1473-1480. https://doi.org/10.1021/jm101520v
  19. Lokeshwar, V. B., Lopez, L. E., Munoz, D., Chi, A., Shirodkar, S. P., Lokeshwar, S. D., Escudero, D. O., Dhir, N. and Altman, N. (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells. Cancer Res. 70, 2613-2623. https://doi.org/10.1158/0008-5472.CAN-09-3185
  20. Maxwell, C. A., Benitez, J., Gomez-Baldo, L., Osorio, A., Bonifaci, N., Fernandez-Ramires, R., Costes, S. V., Guino, E., Chen, H., Evans, G. J., Mohan, P., Catala, I., Petit, A., Aguilar, H., Villanueva, A., Aytes, A., Serra-Musach, J., Rennert, G., Lejbkowicz, F., Peterlongo, P., Manoukian, S., Peissel, B., Ripamonti, C. B., Bonanni, B., Viel, A., Allavena, A., Bernard, L., Radice, P., Friedman, E., Kaufman, B., Laitman, Y., Dubrovsky, M., Milgrom, R., Jakubowska, A., Cybulski, C., Gorski, B., Jaworska, K., Durda, K., Sukiennicki, G., Lubinski, J., Shugart, Y. Y., Domchek, S. M., Letrero, R., Weber, B. L., Hogervorst, F. B., Rookus, M. A., Collee, J. M., Devilee, P., Ligtenberg, M. J., Luijt, R. B., Aalfs, C. M., Waisfisz, Q., Wijnen, J., Roozendaal, C. E., HEBON, EMBRACE, Easton, D. F., Peock, S., Cook, M., Oliver, C., Frost, D., Harrington, P., Evans, D. G., Lalloo, F., Eeles, R., Izatt, L., Chu, C., Eccles, D., Douglas, F., Brewer, C., Nevanlinna, H., Heikkinen, T., Couch, F. J., Lindor, N. M., Wang, X., Godwin, A. K., Caligo, M. A., Lombardi, G., Loman, N., Karlsson, P., Ehrencrona, H., von Wachenfeldt, A., SWE-BRCA, Barkardottir, R. B., Hamann, U., Rashid, M. U., Lasa, A., Caldes, T., Andres, R., Schmitt, M., Assmann, V., Stevens, K., Offit, K., Curado, J., Tilgner, H., Guigo, R., Aiza, G., Brunet, J., Castellsague, J., Martrat, G., Urruticoechea, A., Blanco, I., Tihomirova, L., Goldgar, D. E., Buys, S., John, E. M., Miron, A., Southey, M., Daly, M. B., BCFR, Schmutzler, R. K., Wappenschmidt, B., Meindl, A., Arnold, N., Deissler, H., Varon-Mateeva, R., Sutter, C., Niederacher, D., Imyamitov, E., Sinilnikova, O. M., Stoppa-Lyonne, D., Mazoyer, S., Verny-Pierre, C., Castera, L., de Pauw, A., Bignon, Y. J., Uhrhammer, N., Peyrat, J. P., Vennin, P., Fert Ferrer, S., Collonge-Rame, M. A., Mortemousque, I., GEMO Study Collaborators, Spurdle, A. B., Beesley, J., Chen, X., Healey, S., kConFab, Barcellos-Hoff, M. H., Vidal, M., Gruber, S. B., Lazaro, C., Capella, G., McGuffog, L., Nathanson, K. L., Antoniou, A. C., Chenevix-Trench, G., Fleisch, M. C., Moreno, V. and Pujana, M. A. (2011) Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer. PLoS Biol. 9, e1001199. https://doi.org/10.1371/journal.pbio.1001199
  21. Maxwell, C. A., Keats, J. J., Crainie, M., Sun, X., Yen, T., Shibuya, E., Hendzel, M., Chan, G. and Pilarski, L. M. (2003) RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol. Biol.Cell 14, 2262-2276. https://doi.org/10.1091/mbc.e02-07-0377
  22. Maxwell, C. A., McCarthy, J. and Turley, E. (2008) Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci. 121, 925-932. https://doi.org/10.1242/jcs.022038
  23. Meier, C., Spitschak, A., Abshagen, K., Gupta, S., Mor, J. M., Wolkenhauer, O., Haier, J., Vollmar, B., Alla, V. and Putzer, B. M. (2014) Association of RHAMM with E2F1 promotes tumour cell extravasation by transcriptional up-regulation of fibronectin. J. Pathol. 234, 351-364. https://doi.org/10.1002/path.4400
  24. Poser, S., Impey, S., Trinh, K., Xia, Z. and Storm, D. R. (2000) SRF-dependent gene expression is required for PI3-kinase-regulated cell proliferation. EMBO J. 19, 4955-4966. https://doi.org/10.1093/emboj/19.18.4955
  25. Pujana, M. A., Han, J. D., Starita, L. M., Stevens, K. N., Tewari, M., Ahn, J. S., Rennert, G., Moreno, V., Kirchhoff, T., Gold, B., Assmann, V., Elshamy, W. M., Rual, J. F., Levine, D., Rozek, L. S., Gelman, R. S., Gunsalus, K. C., Greenberg, R. A., Sobhian, B., Bertin, N., Venkatesan, K., Ayivi-Guedehoussou, N., Sole, X., Hernandez, P., Lazaro, C., Nathanson, K. L., Weber, B. L., Cusick, M. E., Hill, D. E., Offit, K., Livingston, D. M., Gruber, S. B., Parvin, J. D. and Vidal, M. (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338-1349. https://doi.org/10.1038/ng.2007.2
  26. Rahman, M., Miyamoto, H. and Chang, C. (2004) Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin. Cancer Res. 10, 2208-2219. https://doi.org/10.1158/1078-0432.CCR-0746-3
  27. Rizzardi, A. E., Vogel, R. I., Koopmeiners, J. S., Forster, C. L., Marston, L. O., Rosener, N. K., Akentieva, N., Price, M. A., Metzger, G. J., Warlick, C. A., Henriksen, J. C., Turley, E. A., McCarthy, J. B. and Schmechel, S. C. (2014) Elevated hyaluronan and hyaluronan-mediated motility receptor are associated with biochemical failure in patients with intermediate-grade prostate tumors. Cancer 120, 1800-1809. https://doi.org/10.1002/cncr.28646
  28. Saxton, R. A. and Sabatini, D. M. (2017a) mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976. https://doi.org/10.1016/j.cell.2017.02.004
  29. Saxton, R. A. and Sabatini, D. M. (2017b) mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371 [Erratum]. https://doi.org/10.1016/j.cell.2017.03.035
  30. Sohr, S. and Engeland, K. (2008) RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53. Cell Cycle 7, 3448-3460. https://doi.org/10.4161/cc.7.21.7014
  31. Song, J. M., Im, J., Nho, R. S., Han, Y. H., Upadhyaya, P. and Kassie, F. (2019) Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol. Carcinog. 58, 321-333. https://doi.org/10.1002/mc.22930
  32. Sun, Y., Jiang, M., Park, P. H. and Song, K. (2020) Transcriptional suppression of androgen receptor by 18beta-glycyrrhetinic acid in LN-CaP human prostate cancer cells. Arch. Pharm. Res. 43, 433-448. https://doi.org/10.1007/s12272-020-01228-z
  33. Tafur, L., Kefauver, J. and Loewith, R. (2020) Structural insights into TOR signaling. Genes 11, 885. https://doi.org/10.3390/genes11080885
  34. Taplin, M. E. and Balk, S. P. (2004) Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem. 91, 483-490. https://doi.org/10.1002/jcb.10653
  35. Thangavel, C., Boopathi, E., Liu, Y., Haber, A., Ertel, A., Bhardwaj, A., Addya, S., Williams, N., Ciment, S. J., Cotzia, P., Dean, J. L., Snook, A., McNair, C., Price, M., Hernandez, J. R., Zhao, S. G., Birbe, R., McCarthy, J. B., Turley, E. A., Pienta, K. J., Feng, F. Y., Dicker, A. P., Knudsen, K. E. and Den, R. B. (2017) RB loss promotes prostate cancer metastasis. Cancer Res. 77, 982-995. https://doi.org/10.1158/0008-5472.CAN-16-1589
  36. Turley, E. A., Noble, P. W. and Bourguignon, L. Y. (2002) Signaling properties of hyaluronan receptors. J. Biol. Chem. 277, 4589-4592. https://doi.org/10.1074/jbc.R100038200
  37. Wang, F., Meng, M., Mo, B., Yang, Y., Ji, Y., Huang, P., Lai, W., Pan, X., You, T., Luo, H., Guan, X., Deng, Y., Yuan, S., Chu, J., Namaka, M., Hughes, T., Ye, L., Yu, J., Li, X. and Deng, Y. (2018) Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat. Commun. 9, 4874. https://doi.org/10.1038/s41467-018-07277-9
  38. Wang, K. and Zhang, T. (2016) Prognostic significance of CD168 overexpression in colorectal cancer. Oncol. Lett. 12, 2555-2559. https://doi.org/10.3892/ol.2016.4974
  39. Wang, Z., Wu, Y., Wang, H., Zhang, Y., Mei, L., Fang, X., Zhang, X., Zhang, F., Chen, H., Liu, Y., Jiang, Y., Sun, S., Zheng, Y., Li, N. and Huang, L. (2014) Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl. Acad. Sci. U.S.A. 111, E89-E98.
  40. Watson, P. A., Arora, V. K. and Sawyers, C. L. (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701-711. https://doi.org/10.1038/nrc4016
  41. Xu, Y., Chen, S. Y., Ross, K. N. and Balk, S. P. (2006) Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783-7792. https://doi.org/10.1158/0008-5472.CAN-05-4472
  42. Zhang, H., Berel, D., Wang, Y., Li, P., Bhowmick, N. A., Figlin, R. A. and Kim, H. L. (2013) A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. PLoS ONE 8, e54918. https://doi.org/10.1371/journal.pone.0054918
  43. Zhang, J., Wu, D., He, Y., Li, L., Lu, J. Z., Gui, H., Wang, Y., Tao, Y., Wang, H.Z., Kaushik, D., Rodriguez, R. and Wang, Z. (2020) Rapamycin inhibits AR signaling pathway in prostate cancer by interacting with the FK1 domain of FKBP51. Biochem. Biophys. Rep. 23, 100778.
  44. Zlobec, I., Baker, K., Terracciano, L. M. and Lugli, A. (2008) RHAMM, p21 combined phenotype identifies microsatellite instability-high colorectal cancers with a highly adverse prognosis. Clin. Cancer Res. 14, 3798-3806. https://doi.org/10.1158/1078-0432.CCR-07-5103

피인용 문헌

  1. HMMR is a downstream target of FOXM1 in enhancing proliferation and partial epithelial-to-mesenchymal transition of bladder cancer cells vol.408, pp.2, 2021, https://doi.org/10.1016/j.yexcr.2021.112860