DOI QR코드

DOI QR Code

Visualization of chromatin higher-order structures and dynamics in live cells

  • Park, Tae Lim (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, YigJi (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Cho, Won-Ki (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2021.07.16
  • 심사 : 2021.08.29
  • 발행 : 2021.10.31

초록

Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures.

키워드

과제정보

This work was supported by the Suh Kyungbae Foundation and National Research Foundation of Korea (NRF) grants (2020R1C1C1014599, 2020R1A4A3079755, 2019M3A9H1103711, and 2019R1A6A1A10073887 to W.-K. Cho).

참고문헌

  1. Cremer T and Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2, 292-301 https://doi.org/10.1038/35066075
  2. Francastel C, Schubeler D, Martin DI and Groudine M (2000) Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol 1, 137-143 https://doi.org/10.1038/35040083
  3. Strahl BD and Allis CD (2000) The language of covalent histone modifications. Nature 403, 41-45 https://doi.org/10.1038/47412
  4. Dundr M and Misteli T (2001) Functional architecture in the cell nucleus. Biochem J 356, 297-310 https://doi.org/10.1042/bj3560297
  5. Levine M, Cattoglio C and Tjian R (2014) Looping back to leap forward: transcription enters a new era. Cell 157, 13-25 https://doi.org/10.1016/j.cell.2014.02.009
  6. Dekker J and Mirny L (2016) The 3d genome as moderator of chromosomal communication. Cell 164, 1110-1121 https://doi.org/10.1016/j.cell.2016.02.007
  7. Bickmore WA and van Steensel B (2013) Genome architecture: Domain organization of interphase chromosomes. Cell 152, 1270-1284 https://doi.org/10.1016/j.cell.2013.02.001
  8. Cremer T and Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2, a003889 https://doi.org/10.1101/cshperspect.a003889
  9. Dekker J, Rippe K, Dekker M and Kleckner N (2002) Capturing chromosome conformation. Science 295, 1306-1311 https://doi.org/10.1126/science.1067799
  10. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293 https://doi.org/10.1126/science.1181369
  11. Cullen KE, Kladde MP and Seyfred MA (1993) Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203-206 https://doi.org/10.1126/science.8327891
  12. Rao SSP, Huntley MH, Durand NC et al (2014) A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680 https://doi.org/10.1016/j.cell.2014.11.021
  13. Szabo Q, Bantignies F and Cavalli G (2019) Principles of genome folding into topologically associating domains. Sci Adv 5, eaaw 1668 https://doi.org/10.1126/sciadv.aaw1668
  14. Nagano T, Lubling Y, Vaarnai C et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61-67 https://doi.org/10.1038/nature23001
  15. Flyamer IM, Gassler J, Imakaev M et al (2017) Single-nucleus hi-c reveals unique chromatin reorganization at oocyte-tozygote transition. Nature 544, 110-114 https://doi.org/10.1038/nature21711
  16. Stevens TJ, Lando D, Basu S et al (2017) 3d structures of individual mammalian genomes studied by single-cell hi-c. Nature 544, 59-64 https://doi.org/10.1038/nature21429
  17. Ramani V, Deng X, Qiu R et al (2017) Massively multiplex single-cell hi-c. Nat Methods 14, 263-266 https://doi.org/10.1038/nmeth.4155
  18. Tan L, Xing D, Chang CH, Li H and Xie XS (2018) Three-dimensional genome structures of single diploid human cells. Science 361, 924-928 https://doi.org/10.1126/science.aat5641
  19. Chevret E, Volpi EV and Sheer D (2000) Mini review: Form and function in the human interphase chromosome. Cytogenet Cell Genet 90, 13-21 https://doi.org/10.1159/000015654
  20. Cremer T, Kreth G, Koester H et al (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: An integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10, 179-212
  21. Lamond AI and Earnshaw WC (1998) Structure and function in the nucleus. Science 280, 547-553 https://doi.org/10.1126/science.280.5363.547
  22. Leitch AR (2000) Higher levels of organization in the interphase nucleus of cycling and differentiated cells. Microbiol Mol Biol Rev 64, 138-152 https://doi.org/10.1128/MMBR.64.1.138-152.2000
  23. Langer-Safer PR, Levine M and Ward DC (1982) Immunological method for mapping genes on drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79, 4381-4385 https://doi.org/10.1073/pnas.79.14.4381
  24. Lichter P, Tang CJ, Call K et al (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64-69 https://doi.org/10.1126/science.2294592
  25. Bolzer A, Craig JM, Cremer T and Speicher MR (1999) A complete set of repeat-depleted, pcr-amplifiable, human chromosome-specific painting probes. Cytogenet Cell Genet 84, 233-240 https://doi.org/10.1159/000015266
  26. Croft JA, Bridger JM, Boyle S, Perry P, Teague P and Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145, 1119-1131 https://doi.org/10.1083/jcb.145.6.1119
  27. Habermann FA, Cremer M, Walter J et al (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9, 569-584 https://doi.org/10.1023/A:1012447318535
  28. Tanabe H, Muller S, Neusser M et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99, 4424-4429 https://doi.org/10.1073/pnas.072618599
  29. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  30. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using crispr/cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  31. Mali P, Yang L, Esvelt KM et al (2013) Rna-guided human genome engineering via cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
  32. Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized crispr/cas system. Cell 155, 1479-1491 https://doi.org/10.1016/j.cell.2013.12.001
  33. Ma H, Tu LC, Naseri A et al (2016) Multiplexed labeling of genomic loci with dcas9 and engineered sgrnas using crisprainbow. Nat Biotechnol 34, 528-530 https://doi.org/10.1038/nbt.3526
  34. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S and Pederson T (2015) Multicolor crispr labeling of chromosomal loci in human cells. Proc Natl Acad Sci U S A 112, 3002-3007 https://doi.org/10.1073/pnas.1420024112
  35. Zhou Y, Wang P, Tian F et al (2017) Painting a specific chromosome with crispr/cas9 for live-cell imaging. Cell Res 27, 298-301 https://doi.org/10.1038/cr.2017.9
  36. Gu B, Swigut T, Spencley A et al (2018) Transcriptioncoupled changes in nuclear mobility of mammalian cisregulatory elements. Science 359, 1050-1055 https://doi.org/10.1126/science.aao3136
  37. Wang H, Nakamura M, Abbott TR et al (2019) Crispr-mediated live imaging of genome editing and transcription. Science 365, 1301-1305 https://doi.org/10.1126/science.aax7852
  38. Bersaglieri C and Santoro R (2019) Genome organization in and around the nucleolus. Cells 8, 579 https://doi.org/10.3390/cells8060579
  39. Briand N and Collas P (2020) Lamina-associated domains: Peripheral matters and internal affairs. Genome Biol 21, 85 https://doi.org/10.1186/s13059-020-02003-5
  40. Prokocimer M, Davidovich M, Nissim-Rafinia M et al (2009) Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 13, 1059-1085 https://doi.org/10.1111/j.1582-4934.2008.00676.x
  41. Shevelyov YY and Nurminsky DI (2012) The nuclear lamina as a gene-silencing hub. Curr Issues Mol Biol 14, 27-38
  42. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M and van Steensel B (2006) Characterization of the drosophila melanogaster genome at the nuclear lamina. Nat Genet 38, 1005-1014 https://doi.org/10.1038/ng1852
  43. Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948-951 https://doi.org/10.1038/nature06947
  44. Ikegami K, Egelhofer TA, Strome S and Lieb JD (2010) Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with lem-2. Genome Biol 11, 1-20 https://doi.org/10.1186/gb-2010-11-1-r1
  45. Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38, 603-613 https://doi.org/10.1016/j.molcel.2010.03.016
  46. Nemeth A, Conesa A, Santoyo-Lopez J et al (2010) Initial genomics of the human nucleolus. PLoS Genet 6, e1000889 https://doi.org/10.1371/journal.pgen.1000889
  47. van Koningsbruggen S, Gierlinski M, Schofield P et al (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21, 3735-3748 https://doi.org/10.1091/mbc.E10-06-0508
  48. Kind J, Pagie L, de Vries SS et al (2015) Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134-147 https://doi.org/10.1016/j.cell.2015.08.040
  49. Meuleman W, Peric-Hupkes D, Kind J et al (2013) Constitutive nuclear lamina-genome interactions are highly conserved and associated with a/t-rich sequence. Genome Res 23, 270-280 https://doi.org/10.1101/gr.141028.112
  50. van Steensel B and Belmont AS (2017) Lamina-associated domains: Links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780-791 https://doi.org/10.1016/j.cell.2017.04.022
  51. Bizhanova A and Kaufman PD (2021) Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. Biochim Biophys Acta Gene Regul Mech 1864, 194666 https://doi.org/10.1016/j.bbagrm.2020.194666
  52. Vertii A, Ou J, Yu J et al (2019) Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Res 29, 1235-1249 https://doi.org/10.1101/gr.247072.118
  53. Borsos M, Perricone SM, Schauer T et al (2019) Genomelamina interactions are established de novo in the early mouse embryo. Nature 569, 729-733 https://doi.org/10.1038/s41586-019-1233-0
  54. Shah PP, Donahue G, Otte GL et al (2013) Lamin b1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27, 1787-1799 https://doi.org/10.1101/gad.223834.113
  55. Lund EG, Duband-Goulet I, Oldenburg A, Buendia B and Collas P (2015) Distinct features of lamin a-interacting chromatin domains mapped by chip-sequencing from sonicated or micrococcal nuclease-digested chromatin. Nucleus 6, 30-39 https://doi.org/10.4161/19491034.2014.990855
  56. Gesson K, Rescheneder P, Skoruppa MP, von Haeseler A, Dechat T and Foisner R (2016) A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res 26, 462-473 https://doi.org/10.1101/gr.196220.115
  57. Pontvianne F, Carpentier MC, Durut N et al (2016) Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3d organization of the a. Thaliana genome. Cell Rep 16, 1574-1587 https://doi.org/10.1016/j.celrep.2016.07.016
  58. Quinodoz SA, Ollikainen N, Tabak B et al (2018) Higher-order inter-chromosomal hubs shape 3d genome organization in the nucleus. Cell 174, 744-757 e24 https://doi.org/10.1016/j.cell.2018.05.024
  59. Becker JS, McCarthy RL, Sidoli S et al (2017) Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol Cell 68, 1023-1037. e15 https://doi.org/10.1016/j.molcel.2017.11.030
  60. Bersaglieri C, Kresoja-Rakic J, Gupta S, Bar D, Kuzyakiv R and Santoro R (2020) Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. bioRxiv, 2020.11.17.386797
  61. Kind J, Pagie L, Ortabozkoyun H et al (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178-192 https://doi.org/10.1016/j.cell.2013.02.028
  62. Kind J and van Steensel B (2014) Stochastic genome-nuclear amina interactions: Modulating roles of lamin a and baf. Nucleus 5, 124-130 https://doi.org/10.4161/nucl.28825
  63. Birch JL and Zomerdijk JC (2008) Structure and function of ribosomal rna gene chromatin. Biochem Soc Trans 36, 619-624 https://doi.org/10.1042/BST0360619