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[3]. Hypercholesterolemia is associated with male reproductive dys-
function. For example, a high-cholesterol diet in male rats is associat-
ed with decreases in sperm quality and in the nuclear dimensions of 
Leydig cells, both of which lead to infertility [4,5]. 

Probiotics are live microbial food additives that have beneficial ef-
fects on host health by regulating the microbial balance of the intes-
tinal tract. The most widely used probiotic microorganisms are Bi-
fidobacterium and Lactobacillus species. Lactic acid bacteria cul-
tures, especially dairy products containing Lactobacillus acidophi-
lus, have been found to lower serum cholesterol and increase the 
quantity of fecal Lactobacilli [6]. 

Differing opinions exist regarding the mechanism of the serum 
cholesterol-lowering effects of probiotic bacteria. The most common 
belief is that probiotics are rapidly eliminated from the intestinal 
tract by breaking down bile salts into free acids. The synthesis of bile 
acids from cholesterol decreases the overall concentration of choles-
terol in the body, as free bile salts are excreted from the body [7]. 
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Introduction 

Cholesterol is a sterol biosynthesized in all animal cells due to its 
structural role in animal cell membranes [1]. In addition, cholesterol 
is a precursor to the biosynthesis of steroid hormones, bile acids, and 
vitamin D [2]. Most cholesterol synthesis takes place in the liver, al-
though some occurs in the kidneys, intestines, and adrenal glands 



Globally, hypercholesterolemia is a very common health issue. In this 
study, we investigated the addition of the probiotic L. acidophilus to 
male rats fed a high-cholesterol diet. We aimed to investigate the 
histopathological impact on testicular tissue along with the effects 
on testosterone (TES), follicle-stimulating hormone (FSH), luteinizing 
hormone (LH), androgen-binding protein (ABP), and apoptosis. 

Methods 

1. Animal materials 
Twenty-four male Sprague-Dawley rats 10–12 weeks of age and 

weighing 300–350 g were used in this study. The rats were obtained 
from Ondokuz Mayis University Experimental Animals Application 
and Research Center. The present study was conducted with the per-
mission of the Ondokuz Mayıs University Animal Experiments Local 
Ethics Committee (2016/27). During the study, an environment with 
a room temperature of 22°C ± 2°C, 60% humidity, and a 12/12 hour 
light/dark cycle was provided. The experimental animals were fed ad 
libitum throughout the study. 

2. Preparation of probiotic suspensions 
Lyophilized L. acidophilus ATCC 4356 was supplied for use as a pro-

biotic medication. The bacteria were inoculated with de Man, Rogosa, 
and Sharpe (MRS) agar for viability, and the purity was confirmed by 
diluting the lyophilized bacteria with MRS broth. One milliliter of the 
culture, determined to be viable and pure, was added to 500 mL of 
MRS agar and incubated at 35°C for 48 hours. At the end of the incu-
bation period, the suspension was inoculated to MRS agar plates and 
incubated at 35°C for 48 hours. After incubation, the bacterial colonies 
were counted, and the concentration of bacteria (colony-forming units 
[CFU]/mL) in the main culture was calculated. Then, 1010 CFU/mL bac-
teria were suspended in the main culture, and a probiotic suspension 
of L. acidophilus was prepared for use as treatment [8]. 

3. Animal experiment 
For the animal experiment, three groups of eight rats were estab-

lished. (1) Group 1 (n = 8, control group [C]): the animals of the con-
trol group were fed standard rat food ad libitum for 8 weeks. (2) 
Group 2 (n = 8, 2% cholesterol [HC]): this group was fed standard rat 
food with 2% cholesterol ad libitum for 8 weeks [9,10]. (3) Group 3 
(2% cholesterol+L. acidophilus [HCL]): this group was fed standard 
rat food with 2% cholesterol ad libitum for 8 weeks [9,10]. For the last 
4 weeks of the experiment, L. acidophilus probiotic (2 × 108 CFU/
mL/day) was administered via oral gavage [8]. 

At the end of the study, the rats were individually weighed, and 
10% ketamine (Ketasol; Richter Pharma Ag, Wels, Austria; 0.8–1.3 
mL/kg) and 2% xylazine (Basilazine; Bavet, Istanbul, Turkey; 2–5 mg/

kg) were applied via intraperitoneal injection. Each rat was decapi-
tated after the blood was drained from the heart, and testicular tis-
sue samples were taken after necropsy.  

4. Preparation of testicular tissue samples for enzyme-linked 
immunosorbent assay 

The testicular tissue samples were weighed after washing with 
ice-cold phosphate-buffered saline (0.01 mol/L, pH 7.0–7.2) before 
homogenization. After the tissue was divided into small pieces, ho-
mogenization was performed in 5–10 mL phosphate buffer solution 
with an ice homogenizer. The cell membrane was subsequently bro-
ken down twice with ice ultrasonics, and ice cream thawing was ap-
plied twice for better cell disintegration. The homogenates were 
centrifuged at 5,000 × g (4°C) for 5 minutes. They were then divided 
into supernatant aliquots and stored at −80°C until the analyses 
were performed. 

5. Determination of testicular TES, FSH, and factor-associated 
apoptosis levels using enzyme-linked immunosorbent assay 

Specific enzyme-linked immunosorbent assay (ELISA) kits were 
used to assess the levels of TES, FSH, and factor-associated apoptosis 
(FAS) in the testicular tissue supernatants of each rat. The ELISA pro-
cedures were performed according to the manufacturer’s instruc-
tions, and the absorbance levels (as optical density values) of the ELI-
SA plates were measured with an ELISA reader. 

6. Determination of serum biochemical parameters 
The LH and ABP levels of each rat were determined using specific 

ELISA kits. The ELISA procedures were performed according to the 
manufacturer’s instructions, and the absorbance levels (as optical 
density values) of the ELISA plates were measured with an ELISA 
reader. Serum TAC levels were measured spectrophotometrically 
with an autoanalyzer. For this analysis, appropriate quantities of the 
samples and reagents were mixed with standard solutions. The re-
sults of the analyses were calculated using optical reading at a spe-
cific time and temperature. 

7. Histopathological examination of testicular tissues 
For the histopathological examination, the testicles of the rats were 

removed and cleaned from the surrounding tissues. The testicles 
were fixed in a 10% formaldehyde solution for histological examina-
tion. The tissues were subjected to routine histopathological fol-
low-up procedures after the detection process and blocked with par-
affin. From the resulting paraffin blocks, 5-μm sections were taken 
using a Leica RM2235 microtome (Leica Biosystems, Wetzlar, Germa-
ny). To analyze the complex histological structure of the testicles, the 
Crossmon triple staining technique was applied to the sections. The 
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stained preparations were examined and photographed in detail 
with a Nikon Eclipse 50i research microscope (Nikon, Tokyo, Japan). 

8. Statistical analysis 
SPSS ver. 16.0 (SPSS Inc., Chicago, USA, USA) was used for statisti-

cal analysis. One-way analysis of variance, Duncan multiple range, 
and Pearson correlation tests were used to evaluate the differences 
and relationships among the groups. 

Results 

1. Determination of TES, FSH, and FAS levels using ELISA 
The levels of FSH, FSH, and FAS in the extracted testicular tissue su-

pernatants are presented in Table 1 as mean ± standard error (SE). The 
average TES levels in the C, HC, and HCL groups were 172.34 ± 3.86, 
121.75 ± 8.82, and 170.61 ± 6.59 (ng/mg tissue), respectively. The 
mean TES level in the testicular tissue was significantly lower in the 
HC group than in the C group, while the level was higher in the HCL 
group than in the HC group. 

The FSH levels of the C, HC, and HCL groups were 129.41 ± 1.43, 
115.47 ± 4.67, and 125.08 ± 1.28 IU/mg tissue, respectively. In the HC 
group, the mean FSH level was dramatically lower than in the C 
group; the level in the HCL group was higher than in the HC group 
and approached that of the C group. In the C, HC, and HCL groups, 
the FAS levels in the testicular tissues were 1.32 ± 0.06, 1.87 ± 0.08, 
and 1.51 ± 0.03 ng/mg tissue, respectively. The mean FAS level was 

significantly greater in the HC group than in the C and HCL groups. 

2. Serum biochemical parameter levels in serum 
The means and standard deviations of the serum LH, ABP, and to-

tal cholesterol (TC) levels of the C, HC, and HCL groups are presented 
in Table 2 as mean ± SE. The LH levels of the C, HC, and HCL groups 
were 12.15 ± 0.41, 7.77 ± 0.15, and 7.85 ± 0.43 (mIU/mL), respective-
ly. The LH levels were lower in the HC and HCL groups than in the C 
group (p > 0.05). The ABP levels of the C, HC, and HCL groups were 
46.74 ± 0.76, 43.91 ± 1.72, and 47.12 ± 0.56 (nmol/L), respectively. 
Relative to the control, the ABP level was slightly higher in the HCL 
group and lower in the HC group (p > 0.05). The TC levels of the C, 
HC, and HCL groups were 52.25 ± 1.75, 75.75 ± 1.98, and 60.95 ± 0.84 
mg/dL, respectively. The TC levels were greater in the HCL and HC 
groups than in the C group. 

3. Correlations 
Correlations between groups with respect to TES, ABP, LH, TC, FSH, 

and FAS levels are presented in Table 3 as mean ± SE. The results in-
cluded a significant negative correlation between TC and LH levels 
(r = −0.711, p < 0.01), a negative correlation between ABP and TC 
levels (r = −0.282), a significant positive correlation between FSH and 
TES levels (r = 0.535, p < 0.01), and a significant negative correlation 
between FSH and TC levels (r = −0.656, p < 0.01). A significant nega-
tive correlation (r = −0.723, p < 0.01) was found between TES and TC 
levels. FAS level was significantly negatively correlated with LH, FSH, 
and TES levels (r = −0.548, p < 0.01; r = −0.698, p < 0.01; r = 0.859, 
p < 0.01), while it was significantly positively correlated with TC level 
(r = 0.821, p < 0.01). 

4. Results of the histopathological examination 
The testicular tissues were found to be surrounded by tunica al-

buginea, an externally irregular tight connective tissue. Seminiferous 
tubules of different lengths and diameters were observed in these 
structures, where the tunica albuginea divides the organ into sep-

Table 1. The levels of FSH, TES, and FAS in the testicular tissue supernatants

Variable C HC HCL
FSH (IU/mg tissue) 129.41 ± 1.43a) 115.47 ± 4.67b) 125.08 ± 1.28a)

TES (ng/mg tissue) 172.34 ± 3.86a) 121.75 ± 8.82b) 170.61 ± 6.59a)

FAS (ng/mg tissue) 1.32 ± 0.06a) 1.87 ± 0.08b) 1.51 ± 0.03a)

Values are presented as mean±standard error.
FSH, follicle-stimulating hormone; TES, testosterone; FAS, factor-associated 
apoptosis; C, control group; HC, hypercholesterolemia group; HCL, hyper-
cholesterolemia+probiotic group.
a),b)Significant differences between groups are indicated by different letters in 
the same row (p < 0.05).

Table 2. The levels of LH, ABP, and TC in the serum

Variable C HC HCL
LH (mIU/mL) 12.15 ± 0.41a) 7.77 ± 0.15b) 7.85 ± 0.43b)

ABP (nmol/L) 46.74 ± 0.76 43.91 ± 1.72 47.12 ± 0.56
TC (mg/dL) 52.25 ± 1.75a) 75.75 ± 1.98b) 60.95 ± 0.84c)

LH, luteinizing hormone; ABP, androgen-binding protein; TC, total cholesterol; 
C, control group; HC, hypercholesterolemia group; HCL, hypercholesterol-
emia+probiotic group.
a),b),c)Significant differences between groups are indicated by different letters 
in the same row (p < 0.05).

Table 3. Correlation relationships among the groups

Variable LH ABP FSH TES TC FAS
LH 1 0.129 0.365 0.343 −0.711b) −0.548b)

ABP 1 0.232 0.472a) −0.282 −0.356
FSH 1 0.535b) −0.656b) −0.698b)

TES 1 −0.723b) −0.859b)

TC 1 0.82b)

FAS 1

LH, luteinizing hormone; ABP, androgen-binding protein; FSH, follicle-stimu-
lating hormone; TES, testosterone; TC, total cholesterol; FAS, factor-associat-
ed apoptosis.
a)p<0.05; b)p<0.01.
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tum by sending arms inside the organ, termed the septula testis. 
Spermatocytes and Sertoli cells at different developmental stages 
were observed in the seminiferous tubules. In the loose connective 
tissue between the tubules, small blood vessels and Leydig cells 
were detected. The tubule walls of the groups were evaluated and 
compared. In the testicles of the HC group, atrophy, vacuolization, 
and decreased integrity of the wall structure were observed in the 
cells in the tubule wall. A significant difference was found relative to 
the C group. However, in the samples from the HCL group, degener-
ate tubule wall cells were almost nonexistent, and the wall structure 
was preserved (Figure 1). 

Discussion 

The effects of probiotics on living beings and their health benefits 
have been emphasized in several studies. This includes their effect 
on hypercholesterolemia, particularly their role in suppressing ad-
vanced cholesterol synthesis and preventing the absorption of ex-
cess cholesterol [11]. Cholesterol is essential for the body because it 
plays a very important role in daily life. It is a crucial component of 
the cell membrane, as well as bile acid synthesis, fat and fat-soluble 
vitamin absorption, and synthesis of steroid hormones (sex hor-
mones, mineralocorticoids, and glucocorticoids) [12]. A high-choles-
terol diet is the primary cause of hyperlipidemia, atherosclerosis, and 
other lipid metabolism disorders that lead to male reproductive sys-
tem defects [13]. In hypercholesterolemia, erythrocytes and endo-
thelial cells, as well as serum, increase the amount of cholesterol 
present. The increase in the quantity of oxidized free radical products 

in these cells has been reported to cause elevated cholesterol [14]. 
Hypercholesterolemia is currently a widespread and common health 
issue. Several studies have shown that beneficial bacterial additives 
can lower serum cholesterol levels in fermented milk products or 
milk products containing lactic acid bacteria [10].The therapeutic 
value of fermented dairy products depends on the survival of these 
bacteria during development and storage [15]. In the present study, 
a rat model of hypercholesterolemia was developed, and L. acidoph-
ilus ATCC 4356—the lipid-lowering properties of which have been 
demonstrated in vitro and in vivo—was administered intragastrical-
ly [10,16]. The results are consistent with previous reports suggesting 
that L. acidophilus has a cholesterol-lowering effect [17-19]. Walker 
and Gilliland [20] posited that L. acidophilus secretes bile salt hydro-
lase to deconjugate bile salts, although no connection was found 
between the reduction of in vitro cholesterol and the degree of bile 
salt deconjugation [21]. These conflicting findings raise the possibili-
ty of other mechanisms that may be associated with the assimilation 
of cholesterol by probiotic bacteria during their development [22]. In 
the present study, the TC level was elevated in the HC and HCL 
groups (p < 0.05) relative to the control. Our analysis indicates that L. 
acidophilus plays a major role in cholesterol synthesis. The adminis-
tration of this probiotic may result in increased catabolism of choles-
terol in the liver, contributing to a hypocholesterolemic impact. Sev-
eral clinical and epidemiological studies have shown an inverse asso-
ciation between serum TES levels and TC [23]. In addition, animal ex-
periments in TES-deficient male mice have also shown dramatically 
elevated serum cholesterol levels [24,25]. Circulating TES levels are 
determined by the steroidogenic potential of Leydig cells and the to-

Figure 1. Rat testis tissue belonging to the control group (A), the hypercholesterolemia group (B), and the probiotic and hypercholesterolemia 
group (C). Arrow, spermatogenetic serial cells separated from each other in seminiferous tubules; asterisk, seminiferous lumen (H&E; triple, 
×20).

A B C
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tal number of Leydig cells per testicle. Stress-induced increases in se-
rum glucocorticoid concentration have been reported to decrease 
the rate of TES release by inhibiting the activity of TES biosynthetic 
enzymes [26]. In another investigation of the impact of probiotics, 
larger testes and higher serum TES levels were observed in male 
mice that regularly ingested lactic acid bacteria than in age-matched 
control mice. Lactobacillus reuteri was administered as a probiotic 
in that study, and a thorough analysis with microscopy-assisted 
histomorphometry showed an increase in the extent of spermato-
genesis and the number of Leydig cells per testis. Furthermore, go-
nadal aging symptoms were claimed to decrease [27]. Mega Aci-
dophilus (a mixture of L. acidophilus, Bifidobacterium bifidum, and 
Lactobacillus helveticus) was administered to New Zealand rabbits 
for 1 month to determine how the probiotic would affect certain pa-
rameters. In that study, probiotic supplements were shown to im-
prove antioxidant activity and substantially increase the level of TES 
[28]. In our study, the TES level in the group given 2% cholesterol for 
8 weeks decreased in the testicular tissue, and the level of TES in-
creased in the group given the L. acidophilus probiotic. Therefore, 
TES deficiency in the liver in HC does not affect de novo cholesterol 
synthesis. A number of human studies have shown that hypercho-
lesterolemia and low semen quality are associated with male infertil-
ity [29-31]. Research on animals fed a high-cholesterol diet has un-
covered more information about this link. In animals with diet-in-
duced hypercholesterolemia, adverse effects of hypercholesterol-
emia on testicular function, including spermatogenesis, were noted 
[5,32-35]. Increased oxidative stress is of considerable research inter-
est among the many pathways suggested for hypercholesterol-
emia-induced testicular injury [16]. When mice were fed a high-fat 
diet, decreased TES, decreased semen quality, seminiferous tubule 
atrophy, and degeneration were reported. The researchers stated 
that the addition of selenium-enriched probiotics to the high-fat diet 
decreased damage to testicular tissue and raised serum TES levels 
[36]. In another study, researchers examined the reproductive sys-
tem structure of male rats fed a high-fat diet for 2 months. They 
found that sperm quality and count decreased, Leydig cell distur-
bances increased, spermatocyte and spermatid structures decreased, 
and significant narrowing of the seminiferous tubule occurred [37]. 
In our sample, relative to the control group, the testicles of the group 
given cholesterol feed (HC) showed atrophy, vacuolization, and dam-
aged wall structure integrity in the tubule wall cells. However, in the 
HCL group, degenerate tubule wall cells were almost nonexistent, 
and the wall structure retained its integrity. According to recent re-
search, high cholesterol levels caused by high-fat diets contribute to 
urological disorders (problems with penile erection, irregular sper-
matogenesis, benign enlargement of the prostate, cancer, etc.). They 
also disrupt the epithelial structure of the tissues and cause function-

al disability [11]. The secretion of FSH and TES is required for the suc-
cessful completion of spermatogenesis. TES, the male sex hormone, 
is secreted by Leydig cells under LH stimulation and plays important 
roles in the differentiation of peripheral tissues and the promotion of 
spermatogenesis [38,39]. ABP binds to TES and estrogens and assists 
their transport into the seminiferous tubule, allowing for their use for 
spermatozoon maturation when required [40]. Testicular ABP syn-
thesis has been reported to be increased by FSH and TES in rats [41]. 
In another study, researchers investigated the impact of Lactobacil-
lus rhamnosus PB01 on sperm kinematic parameters and found that 
TES, LH, and FSH levels, as well as sperm motility rates, were all sig-
nificantly elevated. L. rhamnosus has also been found to act as a 
positive regulatory agent on weight loss and reproductive hormones 
[42]. In our study, serum ABP and LH levels were lower in the HC than 
in the control group, and the amount of FSH in the testicular tissue 
was also lower. ABP and LH levels were greater in the HCL group 
than in the HC group (p > 0.05). In parallel to our results, when a 2% 
cholesterol diet was given to male Wistar rats for 21 days, non-signifi-
cant changes were seen in TES, LH, and prolactin levels, while the 
FSH level was significantly decreased [43]. In another study, a 
high-cholesterol diet induced a significant increase in the TC level 
and significant decreases in the FSH, LH, and TES levels in the serum 
of male rats [44]. Hypercholesterolemia has also been suggested to 
cause reproductive and testicular damage through excessive free 
radical generation and increased oxidative stress, which is cytotoxic 
to spermatozoa [13,34,45]. In hypercholesterolemia, the administra-
tion of antioxidants and lipid-lowering agents has been shown to 
protect the testis and reproductive functions [13,34,46]. In the pres-
ent study, the FAS level was significantly greater (p < 0.05) in the HC 
group than in the control group, while the FAS levels did not differ 
significantly between the HCL group and the control group 
(p > 0.05). The FAS level was significantly negatively correlated with 
LH, FSH, and TES levels, while it was significantly positively correlated 
with TC level. 

This study revealed that probiotic treatment is beneficial for reduc-
ing the cell degeneration in testicular tissue caused by high choles-
terol. Probiotic treatment increased LH, FSH, TSH, and ABP levels, 
while partially reversing the increase in factor-related apoptosis as-
sociated with a high-cholesterol diet. Probiotics have an important 
role as a supplementary treatment for degeneration and as an ad-
junct in the treatment of cell structure disorders, although they are 
not therapeutic in isolation. 
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