과제정보
This work was done within the McSAFE project which is receiving funding from the Euratom research and training programme 2014-2018 under grant agreement No 755097. This work was performed on the computational resource ForHLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG ("Deutsche Forschungsgemeinschaft").
참고문헌
- V. Sanchez-Espinoza, L. Mercatali, J. Leppanen, R. Vo cka, The McSAFE project - high-performance Monte Carlo based methods for safety demonstration: from proof of concept to industry applications, in: PHYSOR 2020 Conference, Cambridge, UK, April, 2020.
- J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82. doi:10.1016/j.anucene.2014.08.024.
- U. Imke, V. Sanchez-Espinoza, Validation of the subchannel code SUBCHAN-FLOW using the NUPEC PWR tests (PSBT), Science and Technology of Nuclear Installations (2012), https://doi.org/10.1155/2012/465059.
- P. Van Uffelen, C. Gyori, A. Schubert, J. van de Laar, Z. H ozer, G. Spykman, Extending the application range of a fuel performance code from normal operating to design basis accident conditions, J. Nucl. Mater. 383 (1). doi: 10.1016/j.jnucmat.2008.08.043.
- M. Garcia, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, U. Imke, P. Van Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, S. Kliem, A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors, Ann. Nucl. Energy 139. doi:10.1016/j.anucene.2019.107213.
- M. Garcia, J. Leppanen, V. Sanchez-Espinoza, A Collision-based Domain Decomposition scheme for large-scale depletion with the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 152. doi:10.1016/j.anucene.2020.108026.
- K. Wang, S. Liu, Z. Li, G. Wang, J. Liang, F. Yang, Z. Chen, X. Guo, Y. Qiu, Q. Wu, J. Guo, X. Tang, Analysis of BEAVRS two-cycle benchmark using RMC based on full core detailed model, Prog. Nucl. Energy 98. doi:10.1016/j.pnucene.2017.04.009.
- J. Yu, H. Lee, M. Lemaire, H. Kim, P. Zhang, D. Lee, Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system, Ann. Nucl. Energy 138. doi:10.1016/j.anucene.2019.107192.
- M. Garcia, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, U. Imke, P. Van Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, S. Kliem, Serpent2-SUBCHANFLOW-TRANSURANUS pin-by-pin depletion calculations for a PWR fuel assembly, in: PHYSOR 2020 Conference, Cambridge, UK, April, 2020.
- CEA/DEN, EDF R&D, OPEN Cascade, SALOME platform documentation: MED-Coupling user's guide. docs.salome-platform.org/7/dev/MEDCoupling/index.html. (Accessed 11 November 2020).
- J. Dufek, D. Kotlyar, E. Shwageraus, The stochastic implicit Euler method - a stable coupling scheme for Monte Carlo burnup calculations, Ann. Nucl. Energy 60. doi:10.1016/j.anucene.2013.05.015.
- J. Leppanen, A. Isotalo, Burnup calculation methodology in the serpent 2 Monte Carlo code, in: PHYSOR 2012 Conference, Knoxville, USA, April, 2012.
- A. Schubert, P. Van Uffelen, J. van de Laar, C. T. Walker, W. Haeck, Extension of the TRANSURANUS burn-up model, J. Nucl. Mater. 376. doi:10.1016/j.jnucmat.2008.01.006.
- D. Ferraro, M. Garcia, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, V. Valtavirta, Foreseen capabilities, bottlenecks identification and potential limitations of Serpent MC transport code in large-scale full 3-D burnup calculations, in: ICONE26 Conference, London, UK, July, 2018, https://doi.org/10.1115/ICONE26-82305.
- CEZ Group, NPP Temelin. www.cez.cz/en/energy-generation/nuclear-power-plants/temelin. (Accessed 11 November 2020).
- O.B. Samojlov, V.B. Kajdalov, A.A. Falkov, V.A. Bolnov, O.N. Morozkin, V.L. Molchanov, A.V. Ugryumov, TVSA-T fuel assembly for Temelin NPP. Main results of design and safety analyses, in: Trends of Development, VVER-2010: Experience and Perspectives Conference, Prague, Czech Republic, November, 2010.
- G. G. Kim, N. Z. Cho, Investigation of the sensitivity depletion laws for rhodium self-powered neutron detectors (SPNDs), Nuclear Engineering and Technology 33.
- OECD/NEA Data Bank, reportThe JEFF-3.1.1 Nuclear Data Library, JEFF Report 22, OECD/NEA Data Bank.
- D. L. Hagrman, G. A. Reymann, reportMATPRO-version 11: a Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, NUREG/CR-0497, TREE-1280 Technical Report, Idaho National Laboratory.
- M. E. Cunningham, C. E. Beyer, reportGT2R2: an Updated Version of GAPCONTHERMAL-2, NUREG/CR-3907, PNL-5178 Technical Report, Pacific Northwest National Laboratory.
- K. Geelhood, W. Luscher, P. Raynaud, I. Porter, reportFRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, PNNL-19418 Technical Report, Pacific Northwest National Laboratory.
- K. Lassmann, F. Hohlefeld, The revised URGAP model to describe the gap conductance between fuel and cladding, Nucl. Eng. Des. 103 (2). doi:10.1016/0029-5493(87)90275-5.
- Steinbuch Centre for Computing (SCC), ForHLR II documentation. www.scc.kit.edu/dienste/forhlr2.php. (Accessed 11 November 2020).
- P. Van Uffelen, A. Schubert, J. Laar, C. Gyori, D. Elenkov, S. Boneva, M. Georgieva, S. Georgiev, Z. Hozer, D. M artens, G. Spykman, C. Hellwig, A. Nordstrom, L. Luzzi, V.D. Marcello, L. Ott, The verification of the TRANSURANUS fuel performance code - an overview, in: 7th International Conference on WWER Fuel Performance, Modelling and Experimental Support, Albena, Bulgaria, September, 2007.