DOI QR코드

DOI QR Code

Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

  • 투고 : 2021.01.12
  • 심사 : 2021.04.22
  • 발행 : 2021.10.25

초록

This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.

키워드

과제정보

This work was done within the McSAFE project which is receiving funding from the Euratom research and training programme 2014-2018 under grant agreement No 755097. This work was performed on the computational resource ForHLR II funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG ("Deutsche Forschungsgemeinschaft").

참고문헌

  1. V. Sanchez-Espinoza, L. Mercatali, J. Leppanen, R. Vo cka, The McSAFE project - high-performance Monte Carlo based methods for safety demonstration: from proof of concept to industry applications, in: PHYSOR 2020 Conference, Cambridge, UK, April, 2020.
  2. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82. doi:10.1016/j.anucene.2014.08.024.
  3. U. Imke, V. Sanchez-Espinoza, Validation of the subchannel code SUBCHAN-FLOW using the NUPEC PWR tests (PSBT), Science and Technology of Nuclear Installations (2012), https://doi.org/10.1155/2012/465059.
  4. P. Van Uffelen, C. Gyori, A. Schubert, J. van de Laar, Z. H ozer, G. Spykman, Extending the application range of a fuel performance code from normal operating to design basis accident conditions, J. Nucl. Mater. 383 (1). doi: 10.1016/j.jnucmat.2008.08.043.
  5. M. Garcia, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, U. Imke, P. Van Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, S. Kliem, A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in Light Water Reactors, Ann. Nucl. Energy 139. doi:10.1016/j.anucene.2019.107213.
  6. M. Garcia, J. Leppanen, V. Sanchez-Espinoza, A Collision-based Domain Decomposition scheme for large-scale depletion with the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 152. doi:10.1016/j.anucene.2020.108026.
  7. K. Wang, S. Liu, Z. Li, G. Wang, J. Liang, F. Yang, Z. Chen, X. Guo, Y. Qiu, Q. Wu, J. Guo, X. Tang, Analysis of BEAVRS two-cycle benchmark using RMC based on full core detailed model, Prog. Nucl. Energy 98. doi:10.1016/j.pnucene.2017.04.009.
  8. J. Yu, H. Lee, M. Lemaire, H. Kim, P. Zhang, D. Lee, Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system, Ann. Nucl. Energy 138. doi:10.1016/j.anucene.2019.107192.
  9. M. Garcia, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, U. Imke, P. Van Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, S. Kliem, Serpent2-SUBCHANFLOW-TRANSURANUS pin-by-pin depletion calculations for a PWR fuel assembly, in: PHYSOR 2020 Conference, Cambridge, UK, April, 2020.
  10. CEA/DEN, EDF R&D, OPEN Cascade, SALOME platform documentation: MED-Coupling user's guide. docs.salome-platform.org/7/dev/MEDCoupling/index.html. (Accessed 11 November 2020).
  11. J. Dufek, D. Kotlyar, E. Shwageraus, The stochastic implicit Euler method - a stable coupling scheme for Monte Carlo burnup calculations, Ann. Nucl. Energy 60. doi:10.1016/j.anucene.2013.05.015.
  12. J. Leppanen, A. Isotalo, Burnup calculation methodology in the serpent 2 Monte Carlo code, in: PHYSOR 2012 Conference, Knoxville, USA, April, 2012.
  13. A. Schubert, P. Van Uffelen, J. van de Laar, C. T. Walker, W. Haeck, Extension of the TRANSURANUS burn-up model, J. Nucl. Mater. 376. doi:10.1016/j.jnucmat.2008.01.006.
  14. D. Ferraro, M. Garcia, L. Mercatali, V. Sanchez-Espinoza, J. Leppanen, V. Valtavirta, Foreseen capabilities, bottlenecks identification and potential limitations of Serpent MC transport code in large-scale full 3-D burnup calculations, in: ICONE26 Conference, London, UK, July, 2018, https://doi.org/10.1115/ICONE26-82305.
  15. CEZ Group, NPP Temelin. www.cez.cz/en/energy-generation/nuclear-power-plants/temelin. (Accessed 11 November 2020).
  16. O.B. Samojlov, V.B. Kajdalov, A.A. Falkov, V.A. Bolnov, O.N. Morozkin, V.L. Molchanov, A.V. Ugryumov, TVSA-T fuel assembly for Temelin NPP. Main results of design and safety analyses, in: Trends of Development, VVER-2010: Experience and Perspectives Conference, Prague, Czech Republic, November, 2010.
  17. G. G. Kim, N. Z. Cho, Investigation of the sensitivity depletion laws for rhodium self-powered neutron detectors (SPNDs), Nuclear Engineering and Technology 33.
  18. OECD/NEA Data Bank, reportThe JEFF-3.1.1 Nuclear Data Library, JEFF Report 22, OECD/NEA Data Bank.
  19. D. L. Hagrman, G. A. Reymann, reportMATPRO-version 11: a Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, NUREG/CR-0497, TREE-1280 Technical Report, Idaho National Laboratory.
  20. M. E. Cunningham, C. E. Beyer, reportGT2R2: an Updated Version of GAPCONTHERMAL-2, NUREG/CR-3907, PNL-5178 Technical Report, Pacific Northwest National Laboratory.
  21. K. Geelhood, W. Luscher, P. Raynaud, I. Porter, reportFRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, PNNL-19418 Technical Report, Pacific Northwest National Laboratory.
  22. K. Lassmann, F. Hohlefeld, The revised URGAP model to describe the gap conductance between fuel and cladding, Nucl. Eng. Des. 103 (2). doi:10.1016/0029-5493(87)90275-5.
  23. Steinbuch Centre for Computing (SCC), ForHLR II documentation. www.scc.kit.edu/dienste/forhlr2.php. (Accessed 11 November 2020).
  24. P. Van Uffelen, A. Schubert, J. Laar, C. Gyori, D. Elenkov, S. Boneva, M. Georgieva, S. Georgiev, Z. Hozer, D. M artens, G. Spykman, C. Hellwig, A. Nordstrom, L. Luzzi, V.D. Marcello, L. Ott, The verification of the TRANSURANUS fuel performance code - an overview, in: 7th International Conference on WWER Fuel Performance, Modelling and Experimental Support, Albena, Bulgaria, September, 2007.