Acknowledgement
The authors thank the Director and Advisor (Management), CSIR-SERC, Chennai for their valuable guidance, encouragement and support in the R&D activities. The assistance rendered by the technical staff of Fatigue & Fracture Laboratory, CSIR-SERC in carrying out the experiments is gratefully acknowledged.
References
- G. Qian, M. Niffenegger, Integrity analysis of a reactor pressure vessel subjected to pressurized thermal shocks by considering constraint effect, Eng. Fract. Mech. 112-113 (2013) 14-25, https://doi.org/10.1016/j.engfracmech.2013.09.009.
- International Atomic Energy Agency, Pressurized Thermal Shock in Nuclear Power Plants: Good Practices for Assessment, IAEA, Vienna, 2010.
- C.E. Pugh, B.R. Bass, A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity under Pressurized Thermal Shock Conditions, NUREG/CR-ORNL/TM-2000/360, TN, USA, 2000.
- R.D. Cheverton, J.W. Bryson, D.J. Alexander, T. Slot, Thermal-shock experiments with flawed clad cylinders, Nucl. Eng. Des. 124 (1990) 109-119, https://doi.org/10.1016/0029-5493(90)90357-4.
- B.R. Bass, C.E. Pugh, J. Sievers, H. Schulz, Overview of the international comparative assessment study of pressurized thermal-shock in reactor pressure vessels (RPV PTS ICAS), Int. J. Pres. Ves. Pip. 78 (2001) 197-211, https://doi.org/10.1016/S0308-0161(01)00030-8.
- R.C. Hurst, J.B. Wintle, B. Hemsworth, in: A.S. Rao, R.B. Duffey, R.B. Duffey, D. Elias (Eds.), NESC: the Network for Evaluating Steel Components, American Society of Mechanical Engineers, New York, 1996.
- L. Stumpfrock, E. Roos, H. Huber, U. Weber, Fracture mechanics investigations on cylindrical large scale specimens under thermal shock loading, Nucl. Eng. Des. 144 (1993) 31-44, https://doi.org/10.1016/0029-5493(93)90006-U.
- Y. Mishima, S. Ishino, M. Ishikawa, H. Okamura, G. Yagawa, T. Hidaka, T. Yamamoto, J. Sanoh, K. Koyama, M. Iida, Y. Urabe, M. Sato, M. Tomimatsu, PTS integrity study in Japan, Int. J. Pres. Ves. Pip. 58 (1994) 91-101, https://doi.org/10.1016/0308-0161(94)90012-4.
- L. Hodulak, J.G. Blauel, D. Siegele, B. Urich, Thermal shock experiments on cracked cladded plates, Nucl. Eng. Des. 188 (1999) 139-147, https://doi.org/10.1016/S0029-5493(99)00021-7.
- S. Chapuliot, M.H. Lacire, S. Marie, M. Nedelec, Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I: description of tests, Eng. Fract. Mech. 72 (2005) 661-673, https://doi.org/10.1016/j.engfracmech.2004.07.005.
- M. Reytier, S. Chapuliot, S. Marie, M. Nedelec, Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone - Part II: numerical calculations and interpretation of the test results, Eng. Fract. Mech. 73 (2006) 283-295, https://doi.org/10.1016/j.engfracmech.2004.07.016.
- A.K. Pawar, J. Chattopadhyay, B.K. Dutta, K.K. Vaze, Safety demonstration of RPV under PTS conditions using cruciform type specimens, in: Struct. Mech. React. Technol. SMiRT-22, IASMiRT, San Francisco, 2013, p. 406.
- M. Chen, F. Lu, R. Wang, A. Ren, Structural integrity assessment of reactor pressure vessel under the pressurized thermal shock loading, Nucl. Eng. Des. 272 (2014) 84-91, https://doi.org/10.1016/j.nucengdes.2015.08.020.
- R. Mukin, I. Clifford, H. Ferroukhi, M. Niffenegger, Pressurized thermal shock (PTS) transient scenarios screening analysis with TRACE, Int. Conf. Nucl. Eng. Proceedings, ICONE. 6A (2018), https://doi.org/10.1115/ICONE26-81749.
- IS: 8811, Method for Emission Spectrometric Analysis of Plain Carbon and Low Alloy Steels Point to Plane Technique, Bureau of Indian Standard, New Delhi, 1998.
- ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, Tokyo, 2011.
- ASTM E1820, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2018.
- ASTM 1921, Standard Test Method for Determination of Reference Temperature, to, for Ferritic Steels in the Transition Range, ASTM International, West Conshohocken, PA, 2017.
- L.C. Wang, S.C. Jeng, N.M. Chung, Results of small break LOCA analysis for Kuosheng nuclear power plant using the RELAP5YA computer code, in: 4th Int. Top. Meet. Nucl. Therm. Hydraul. Oper. Saf., Taiwan, 1994, pp. 1-6.
- A.H. Khan, A.K. Ghosh, M.S. Rahman, S.M.T. Ahmed, C.L. Karmakar, An investigation on the possible radioactive contamination of environment during a steam-Line break accident in a VVER-1200 nuclear power plant, Curr. World Environ. 14 (2019) 299-311, https://doi.org/10.12944/cwe.14.2.14.
- X.K. Zhu, B.N. Leis, J.A. Joyce, Experimental estimation of JR curves from load-CMOD record for SE(B) specimens, J. ASTM Int. (JAI) 5 (2008) 76-91, https://doi.org/10.1007/978-981-10-6002-1_3.
- J.G. Blauel, L. Hodulak, T. Hollstein, B. Voss, Material characterization by J-R curves of a 20MnMoNi55 Forging, Int. J. Pres. Ves. Pip. 17 (1984) 139-162. https://doi.org/10.1016/0308-0161(84)90066-8
- H.S. Nam, J.S. Kim, H.W. Ryu, Y.J. Kim, J.W. Kim, Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions, Nucl. Eng. Technol. 48 (2016) 1252-1263, https://doi.org/10.1016/j.net.2016.03.012.
- X. Li, Z. Ding, C. Liu, S. Bao, H. Qian, Y. Xie, Z. Gao, Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint, Nucl. Eng. Technol. 52 (2020) 1732-1741, https://doi.org/10.1016/j.net.2020.01.020.
- H.Y. Li, Y.H. Li, X.F. Wang, J.J. Liu, P.L. Xiao, Effect of quenching process on mechanical properties and ductile-brittle transition behavior of 28CrMnMoV steel, J. Cent. South Univ. 20 (2013) 1456-1461, https://doi.org/10.1007/s11771-013-1634-4.
- S. Bhowmik, P. Sahoo, S.K. Acharyya, S. Dhar, J. Chattopadhyay, Evaluation and effect of loss of constraint on master curve reference temperature of 20MnMoNi55 steel, Eng. Fract. Mech. 136 (2015) 142-157, https://doi.org/10.1016/j.engfracmech.2015.01.022.
- NUREG/CR-5493, Influence of Fluence Rate on Radiation-Induced Mechanical Property Changes in Reactor Pressure Vessel Steels, US NRC, 1990.
- I.S. Kim, S.S. Kang, Dynamic strain aging in SA508-class 3 pressure vessel steel, Int. J. Pres. Ves. Pip. 62 (1995) 123-129, https://doi.org/10.1016/0308-0161(95)93969-C.
- K.G. Samuel, O. Gossmann, H. Huthmann, Temperature dependence of fracture toughness (J-R-curves) of a modified type 316L austenitic stainless steel, Int. J. Pres. Ves. Pip. 41 (1990) 59-74, https://doi.org/10.1016/0308-0161(90)90077-U.
- M.S. El-Fadaly, T.A. ElSarrage, A.M. Eleiche, W. Dahl, Fracture toughness of 20MnMoNi55 steel at different temperatures as affected by room-temperature pre-deformation, J. Mater. Process. Technol. 54 (1995) 159-165, https://doi.org/10.1016/0924-0136(95)01936-7.
- D. Datta, Introduction to eXtended Finite Element (XFEM) Method, France, 2013. http://arxiv.org/abs/1308.5208.
- S. Mohammadi, Extended Finite Element Method for Fracture Analysis of Structures, Blackwell Publishing Limited, Hoboken, 2008.
- T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, third ed., Taylor & Francis, New York, 2005 https://doi.org/10.1007/978-1-4612-1740-4. NY.
- S.K. Kudari, K.G. Kodancha, Effect of specimen thickness on plastic zone, 17th eur. Conf. Fract. 2008 multilevel approach to fract, Mater. Components Struct 1 (2008) 530-538.