Acknowledgement
The authors would like to thank the Program Nuclear Safety Research (NUSAFE) of the Karlsruhe Institute of Technology (KIT) for the financial support of the research topic "Predisposal".
References
- Spent Nuclear Fuel Assay Data for Isotopic Validation, Report NEA/NSC/WPNCS/DOC, 2011, 5, (2011).
- P. Standring, G. Bruno, Management of spent fuel from nuclear power reactors, in: Proceedings of the IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors, Vienna, 2015.
- L. Mercatali, A. Venturini, V.H. Sanchez-Espinoza, SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark, Ann. Nucl. Energy 83 (2015) 328-341. https://doi.org/10.1016/j.anucene.2015.03.036
- L. Mercatali, et al., Monte Carlo neutronics investigations of VVER-1000 fuel assemblies, in: Proceedings of the 46th Annual Meeting on Nuclear Technology, Berlin, 2015.
- F. Michel-Sendis, et al., SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110 (2017) 779-788. https://doi.org/10.1016/j.anucene.2017.07.022
- Makarova, et al., Destructive analysis of the nuclide composition of spent fuel ov WWER-440, WWER-1000 and RBMK-1000 reactor, Radiochemistry 50 (2008) 414-426. https://doi.org/10.1134/S1066362208040152
- B.D. Murphy, et al., Simulation of Low-EnrichedUranium (LEU) Burnup in Russian VVER Reactors with the HELIOS Code Package, 1999. Report ORNL/TM-1999/168.
- Z. Xu, J. Rodhes, K. Smith, Statistical implications in Monte Carlo depletions, in: Proceedings of PHYSOR 2010 - Advances in Reactor Physics to Power the Nuclear Renaissance, Pitsburgh, Pennsylvania - USA, 2010.
- V.H. Sanchez-Espinoza, et al., The McSAFE project - high-performance Monte Carlo based methods for safety demonstration: from proof of concept to industry applications, in: 247, EPJ Web Conf., 2021. https://doi.org/10.1051/epjconf/202124706004.
- J. Leppanen, et al., The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150. https://doi.org/10.1016/j.anucene.2014.08.024
- A. Santamarina, et al., The JEFF-3.1.1 nuclear data library, JEFF Report 22 (2009).
- M. B Chadwick, et al., ENDF/B-VII.1 nuclear data for science and Technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996. https://doi.org/10.1016/j.nds.2011.11.002
- D.A. Brown, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
- A.N. Novikov, et al., Problems of VVER In-Core Fuel Management, 1990. Report IAEA-TECDOC-567.
- I. Gauld, U. Mertyurek, Margins for Uncertainty in the Predicted Spent Fuel Isotopic Inventories for BWR Burnup Credit, 2018. Report NUREG/CR-7251.
- J.S. Kim, et al., Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup, Nuclear Engineering and Technology 47 (7) (2015) 924-933. https://doi.org/10.1016/j.net.2015.08.002
- M. Pusa, J. Leppanen, Computing the matrix exponential in burnup calculations, Nucl. Sci. Eng. 164 (2010) 140-150. https://doi.org/10.13182/NSE09-14
- T. Takeda, et al., Estimation of error propagation in monte-CarloBurnup calculations, J. Nucl. Sci. Technol. 36 (2) (1999) 738-745. https://doi.org/10.1080/18811248.1999.9726262
- B. Roque, et al., Experimental validation of the code system "Darwin" for SPent fuel isotopic predictions in fuel cycle applications, in: Proceedings of PHYS0R2002, Seoul-Korea, 2002.
- H.J. Park, et al., Comparison of ENDF/B-VIII.0 and ENDF/B-VII.1 in criticality, depletion benchmark, and uncertainty analyses by McCARD, Ann. Nucl. Energy 131 (2019) 443-459. https://doi.org/10.1016/j.anucene.2019.04.012
- L. Zheng, et al., Criticality benchmarking of ENDF/B-VIII.0 and JEFF-3.3 neutron data libraries with RMC code, Nuclear Engineering and Technology 52 (2020) 1917-1925. https://doi.org/10.1016/j.net.2020.02.022
- M.B. Chadwick, et al., CIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen, Nucl. Data Sheets 148 (2018) 189-213. https://doi.org/10.1016/j.nds.2018.02.003
- L. Mercatali, Y. Alzaben, V.H. Sanchez-Espinoza, Propagation of nuclear data uncertainties in PWR pin-cell burnup calculations via stochastic sampling, in: Proceedings of ICONE26 - International Conference in Nuclear Engineering, London/UK, 2018.
- B. Ebiwonjumi, et al., Uncertainty quantification of PWR spent fuel due to nuclear data and modeling parameters, Nuclear Engineering and Technology 53 (2021) 715-731. https://doi.org/10.1016/j.net.2020.07.012
- N. Mihaylov, M. Manolova, M. Peeva, Validation of SCALE depletion moduleagainst VVER experimental data, in: Proceedings of the 16th Symposium of AER on VVER Reactor Physics and Reactor Safety, Bratislava-Slovakia, 2006.
- O. Leray, et al., Nuclear data uncertainty propagation on spent fuel nuclide compositions, Ann. Nucl. Energy 94 (2016) 603-611. https://doi.org/10.1016/j.anucene.2016.03.023