DOI QR코드

DOI QR Code

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A. (Medical Imaging Department, Al Azhar University-Gaza) ;
  • Asad, J. (Physics Department, Al Azhar University-Gaza) ;
  • Humaid, M. (Medical Imaging Department, Al Azhar University-Gaza) ;
  • Musleh, H. (Physics Department, Al Azhar University-Gaza) ;
  • Shaat, S.K.K. (Physics Department, Islamic University of Gaza) ;
  • Ramadan, Kh (Physics Department, Al Azhar University-Gaza) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, Isra University) ;
  • Alajerami, Y. (Medical Imaging Department, Al Azhar University-Gaza) ;
  • Aldahoudi, N. (Physics Department, Al Azhar University-Gaza)
  • Received : 2020.12.12
  • Accepted : 2021.04.01
  • Published : 2021.09.25

Abstract

Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

Keywords

References

  1. P. Kaur, K. Singh, S. Thakur, P. Singh, B. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 206 (2019) 367-377. https://doi.org/10.1016/j.saa.2018.08.038
  2. A.M. Ali, Y. Rammah, M. Sayyed, H. Somaily, H. Algarni, M. Rashad, The impact of lead oxide on the optical and gamma shielding properties of barium borate glasses, Appl. Phys. A 126 (2020) 1-9. https://doi.org/10.1007/s00339-019-3176-6
  3. Y. Al-Hadeethi, M.I. Sayyed, Hiba Mohammed, Lia Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceram. Int. 46 (2020) 251-257. https://doi.org/10.1016/j.ceramint.2019.08.258
  4. I. Kebaili, I. Boukhris, M. Sayyed, B. Tonguc, M. Al-Buriahi, Effect of TiO2/V2O5 substitution on the optical and radiation shielding properties of alkali borate glasses: a Monte Carlo investigation, Ceram. Int. 46 (2020) 25671-25677. https://doi.org/10.1016/j.ceramint.2020.07.042
  5. A. Saeed, Y. Elbashar, S. El Khameesy, A novel barium borate glasses for optical applications, Siliconindia 10 (2018) 569-574. https://doi.org/10.1007/s12633-016-9492-y
  6. Y. Alajerami, D. Drabold, M. Mhareb, K.L.A. Cimatu, G. Chen, M. Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides, Ceram. Int. 46 (2020) 12718-12726. https://doi.org/10.1016/j.ceramint.2020.02.039
  7. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2-B2O3-Bi2O3-LiF-SrCl2 glass system using Phy-X/PSD software, Ceram. Int. 46 (2020) 6136-6140. https://doi.org/10.1016/j.ceramint.2019.11.078
  8. Y. Al-Hadeethi, M.I. Sayyed, BaO-Li2O-B2O3 glass systems: potential utilization in gamma radiation protection, Prog. Nucl. Energy 129 (2020) 103511. https://doi.org/10.1016/j.pnucene.2020.103511
  9. M. Dogra, K. Singh, K. Kaur, V. Anand, P. Kaur, Gamma ray shielding and structural properties of PbO-P2O5-Na2WO4 glass system, in: AIP Conference Proceedings, AIP Publishing LLC, 2017, 070019.
  10. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3-CaO glasses, Ceram. Int. 46 (2020) 2055-2062. https://doi.org/10.1016/j.ceramint.2019.09.185
  11. M. Mhareb, M. Alqahtani, F. Alshahri, Y. Alajerami, N. Saleh, N. Alonizan, M. Sayyed, M. Ashiq, T. Ghrib, S.I. Al-Dhafar, The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass, J. Non-Cryst. Solids 541 (2020) 120090. https://doi.org/10.1016/j.jnoncrysol.2020.120090
  12. M. Dong, M. Sayyed, G. Lakshminarayana, M.C. Ersundu, A. Ersundu, P. Nayar, M. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, J. NonCryst. Solids 468 (2017) 12-16. https://doi.org/10.1016/j.jnoncrysol.2017.04.018
  13. K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, L.R. Moorthy, G.V. Prakash, Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications, J. Lumin. 156 (2014) 80-86. https://doi.org/10.1016/j.jlumin.2014.07.022
  14. S.Y. Marzouk, S. Zobaidi, A. Okasha, M. Gaafar, The spectroscopic and elastic properties of borosilicate glasses doped with NdF3, J. Non-Cryst. Solids 490 (2018) 22-30. https://doi.org/10.1016/j.jnoncrysol.2018.03.044
  15. E. Salama, A. Maher, G. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead, J. Phys. Chem. Solid. 131 (2019) 139-147. https://doi.org/10.1016/j.jpcs.2019.04.002
  16. P. Kaur, K. Singh, M. Kurudirek, S. Thakur, Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 223 (2019) 117309. https://doi.org/10.1016/j.saa.2019.117309
  17. P. Pawar, S. Munishwar, R. Gedam, Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: a correlation between physical, thermal, structural and optical properties, Solid State Sci. 64 (2017) 41-50. https://doi.org/10.1016/j.solidstatesciences.2016.12.009
  18. A. Makishima, J.D. Mackenzie, Direct calculation of Young's moidulus of glass, J. Non-Cryst. Solids 12 (1973) 35-45. https://doi.org/10.1016/0022-3093(73)90053-7
  19. S.A. Issa, A. Kumar, M. Sayyed, M. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses, Mater. Chem. Phys. 212 (2018) 12-20. https://doi.org/10.1016/j.matchemphys.2018.01.058
  20. D. Kumar, S. Rao, S.P. Singh, Structural, optical and thermoluminescence study of Dy3+ ion doped sodium strontium borate glass, J. Non-Cryst. Solids 464 (2017) 51-55. https://doi.org/10.1016/j.jnoncrysol.2017.03.029
  21. S. Kaur, G.P. Singh, P. Kaur, D. Singh, Cerium luminescence in borate glass and effect of aluminium on blue green emission of cerium ions, J. Lumin. 143 (2013) 31-37. https://doi.org/10.1016/j.jlumin.2013.04.027
  22. A. Saeed, Y. Elbashar, Optical properties of high density barium borate glass for gamma ray shielding applications, Opt. Quant. Electron. 48 (2016) 1. https://doi.org/10.1007/s11082-015-0274-3
  23. A. Ichoja, S. Hashim, S. Ghoshal, I. Hashim, R. Omar, Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion, J. Rare Earths 36 (2018) 1264-1271. https://doi.org/10.1016/j.jre.2018.05.013
  24. A. Kumar, R. Kaur, M. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behavior of (20+ x) PbO-10 BaO-10 Na2O-10 MgO-(50-x) B2O3 glasses, Phys. B Condens. Matter 552 (2019) 110-118. https://doi.org/10.1016/j.physb.2018.10.001
  25. M. Mhareb, S. Hashim, S. Ghoshal, Y. Alajerami, M. Bqoor, A. Hamdan, M. Saleh, M.A. Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass, J. Lumin. 177 (2016) 366-372. https://doi.org/10.1016/j.jlumin.2016.05.002
  26. S. Shaat, H. Musleh, H. Zayed, J. Asad, N. AlDahoudi, Structural parameters of hydrothermally synthesized ZnO nanostructure and their based solar cells, Nano-Struct. Nano-Obj. 23 (2020) 100515. https://doi.org/10.1016/j.nanoso.2020.100515
  27. S. Arya, G. Kaur, K. Singh, Effect of vanadium on the optical and physical properties of lithium borate glasses, J. Non-Cryst. Solids 432 (2016) 393-398. https://doi.org/10.1016/j.jnoncrysol.2015.10.037
  28. T.Y. Lim, H. Wagiran, R. Hussin, S. Hashim, M. Saeed, Physical and optical properties of dysprosium ion doped strontium borate glasses, Phys. B Condens. Matter 451 (2014) 63-67. https://doi.org/10.1016/j.physb.2014.06.028
  29. F. Zaman, G. Rooh, N. Srisittipokakun, C. Wongdeeying, H. Kim, J. Kaewkhao, Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs, Solid State Sci. 80 (2018) 161-169. https://doi.org/10.1016/j.solidstatesciences.2018.04.010
  30. S. Mohan, K.S. Thind, Optical and spectroscopic properties of neodymium doped cadmium-sodium borate glasses, Opt Laser. Technol. 95 (2017) 36-41. https://doi.org/10.1016/j.optlastec.2017.04.016
  31. S. Alazoumi, Optical properties of zinc lead tellurite glasses, Result. Phys. 9 (2018) 1371-1376. https://doi.org/10.1016/j.rinp.2018.04.041
  32. R. Kaur, V. Bhatia, D. Kumar, S. Rao, S.P. Singh, A. Kumar, Physical, structural, optical and thermoluminescence behavior of Dy2O3 doped sodium magnesium borosilicate glasses, Results Phys. 12 (2019) 827-839. https://doi.org/10.1016/j.rinp.2018.12.005
  33. M. Sayyed, Y. Rammah, F. Laariedh, A. Abouhaswa, T.-B. Badeche, Lead borate glasses doped by lanthanum: synthesis, physical, optical, and gamma photon shielding properties, J. Non-Cryst. Solids 527 (2020) 119731. https://doi.org/10.1016/j.jnoncrysol.2019.119731
  34. E. S, akar, O.F. Ozpolat, B. Alim, M. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020) 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  35. Aljawhara H. Almuqrin, M.I. Sayyed, Radiation shielding characterizations and investigation of TeO2-WO3-Bi2O3 and TeO2-WO3-PbO glasses, Appl. Phys. A 127 (2021) 190. https://doi.org/10.1007/s00339-021-04344-9
  36. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses, Radiat. Phys. Chem. 136 (2017) 50-53. https://doi.org/10.1016/j.radphyschem.2017.03.023
  37. M. Rashad, A.M. Ali, M. Sayyed, H. Somaily, H. Algarni, Y. Rammah, Radiation attenuation and optical features of lithium borate glasses containing barium: B2O3. Li2O. BaO, Ceram. Int. 46 (2020) 21000-21007. https://doi.org/10.1016/j.ceramint.2020.05.165
  38. A.D. Negro, J.M. Martin Pozas, L. Ungaretti, The crystal structure of ameghinite, Am. Mineral.: J. Earth Planet. Mater. 60 (1975) 879-883.
  39. H. Silim, Composition effect on some physical properties and FTIR spectra of alumino-borate glasses containing lithium, sodium, potassium and barium oxides, Egypt, J. Solids 29 (2006) 293-301. https://doi.org/10.21608/ejs.2006.149276
  40. H. Doweidar, A. Megahed, I. Gohar, Mixed ionic-electronic conduction in sodium borate glasses with low V2O5 content, J. Phys. Appl. Phys. 19 (1986) 1939. https://doi.org/10.1088/0022-3727/19/10/018
  41. H. Doweidar, G. El-Damrawi, M. Al-Zaibani, Distribution of species in Na2O-CaO-B2O3 glasses as probed by FTIR, Vib. Spectrosc. 68 (2013) 91-95. https://doi.org/10.1016/j.vibspec.2013.05.015
  42. C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives, ISRN Ceram. (2012) 2012.
  43. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses, J. Phys. Chem. Solid. 72 (2011) 245-251. https://doi.org/10.1016/j.jpcs.2011.01.007
  44. F. He, Z. He, J. Xie, Y. Li, IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system, Am. J. Anal. Chem. 5 (2014) 1142. https://doi.org/10.4236/ajac.2014.516121
  45. I. Ardelean, M. Toderas, FTIR structural investigation of 3B~2O3.BaO glass matrix containing manganese ions, J. Optoelectron. Adv. Mater. 8 (2006) 1118.
  46. S. Sindhu, S. Sanghi, A. Agarwal, V. Seth, N. Kishore, The role of V2O5 in the modification of structural, optical and electrical properties of vanadium barium borate glasses, Phys. B Condens. Matter 365 (2005) 65-75. https://doi.org/10.1016/j.physb.2005.04.037
  47. B. El-Bashir, M. Sayyed, M. Zaid, K. Matori, Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, J. Non-Cryst. Solids 468 (2017) 92-99. https://doi.org/10.1016/j.jnoncrysol.2017.04.031
  48. V.V. Gowda, R. Anavekar, K. Rao, Elastic properties of fast ion conducting lithium based borate glasses, J. Non-Cryst. Solids 351 (2005) 3421-3429. https://doi.org/10.1016/j.jnoncrysol.2005.09.002
  49. M. Mhareb, S. Hashim, S. Ghoshal, Y. Alajerami, M. Saleh, R. Dawaud, N. Razak, S. Azizan, Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass, Opt. Mater. 37 (2014) 391-397. https://doi.org/10.1016/j.optmat.2014.06.033
  50. F. Chen, S. Dai, Q. Nie, T. Xu, X. Shen, X. Wang, Glass formation and optical band gap studies on Bi2O3-B2O3-BaO ternary system, J. Wuhan Univ. Technol.-Materials Sci. Ed. 24 (2009) 716-720. https://doi.org/10.1007/s11595-009-5716-y
  51. S. Bhardwaj, R. Shukla, S. Sanghi, A. Agarwal, I. Pal, Spectroscopic properties of Sm3+ doped lead bismosilicate glasses using JuddeOfelt theory, Spectrochim. Acta Mol. Biomol. Spectrosc. 117 (2014) 191-197. https://doi.org/10.1016/j.saa.2013.08.006
  52. V. Dimitrov, T. Komatsu, Electronic polarizability and average single bond strength of ternary oxide glasses with high TiO2 contents, Eur. J. Glasses Sci. Technol. B Phys. Chem. Glasses 52 (2011) 225-230.
  53. B. Speit, in: Radiation-shielding Glasses Providing Safety against Electrical Discharge and Being Resistant to Discoloration, Google Patents, 1991.
  54. M. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications, J. Non-Cryst. Solids 487 (2018) 53-59. https://doi.org/10.1016/j.jnoncrysol.2018.02.014
  55. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0

Cited by

  1. Physical, structural and nuclear radiation shielding behaviour of xBaO-(0.30-x)MgO-0.10Na2O-0.10Al2O3-0.50B2O3 glass matrix vol.276, 2022, https://doi.org/10.1016/j.matchemphys.2021.125415