DOI QR코드

DOI QR Code

Comparison of theoretical and machine learning models to estimate gamma ray source positions using plastic scintillating optical fiber detector

  • Kim, Jinhong (School of Energy Systems Engineering, Chung-Ang University) ;
  • Kim, Seunghyeon (School of Energy Systems Engineering, Chung-Ang University) ;
  • Song, Siwon (School of Energy Systems Engineering, Chung-Ang University) ;
  • Park, Jae Hyung (School of Energy Systems Engineering, Chung-Ang University) ;
  • Kim, Jin Ho (School of Energy Systems Engineering, Chung-Ang University) ;
  • Lim, Taeseob (School of Energy Systems Engineering, Chung-Ang University) ;
  • Pyeon, Cheol Ho (Research Center for Safe Nuclear System, Institute for Integrated Radiation and Nuclear Science, Kyoto University) ;
  • Lee, Bongsoo (School of Energy Systems Engineering, Chung-Ang University)
  • 투고 : 2021.02.23
  • 심사 : 2021.04.15
  • 발행 : 2021.10.25

초록

In this study, one-dimensional gamma ray source positions are estimated using a plastic scintillating optical fiber, two photon counters and via data processing with a machine learning algorithm. A nonlinear regression algorithm is used to construct a machine learning model for the position estimation of radioactive sources. The position estimation results of radioactive sources using machine learning are compared with the theoretical position estimation results based on the same measured data. Various tests at the source positions are conducted to determine the improvement in the accuracy of source position estimation. In addition, an evaluation is performed to compare the change in accuracy when varying the number of training datasets. The proposed one-dimensional gamma ray source position estimation system with plastic scintillating fiber using machine learning algorithm can be used as radioactive leakage scanners at disposal sites.

키워드

과제정보

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2019 and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020M2D2A2062457).

참고문헌

  1. P. Finocchiaro, DMNR: a new concept for real-time online monitoring of short and medium term radioactive waste, in: Radioactive Waste: Sources, Types and Management; Satoshi Yuan, Wenxu Hidaka, Nova Science Publishers, Inc., New York, USA, 2012, pp. 1-40 (Chapter 1).
  2. Classification of Radioactive Waste, IAEA Safety Series No. 111-G-1.1.
  3. A. Pappalardo, C. Cali, L. Cosentino, M. Barbagallo, G. Guardo, P. Litrico, S. Scire, C. Scire, P. Finocchiaro, Performance evaluation of SiPM's for low threshold gamma detection, Nucl. Phys. B-Proc. Sup. 215 (2011) 41-43. https://doi.org/10.1016/j.nuclphysbps.2011.03.129
  4. L. Cosentino, C. Cali, G.D. Luca, G. Guardo, P. Litrico, A. Pappalardo, M. Piscopo, C. Scire, S. Scire, G. Vecchio, E. Botta, P. Finocchiaro, Real-time online monitoring of radwaste storage: a proof-of-principle test prototype, IEEE Trans. Nucl. Sci. 59 (2012) 1426-1431. https://doi.org/10.1109/TNS.2012.2199998
  5. G.F. Knoll, in: Radiation Detection and Measurement, fourth ed., John Wiley & Sons, Inc., New York, USA, 2010.
  6. S.D. Lee, Plastic Scintillation Fibers for Radiological Contamination Surveys; EPA/600/R-17/370, 2017.
  7. J.W. Park, G.H. Kim, Detection of gamma rays using plastic scintillating fibers, J. Nucl. Sci. Technol. 41 (2014) 373-376, sup4. https://doi.org/10.1080/00223131.2004.10875724
  8. A. Nohtomi, N. Sugiura, T. Itoh, T. Torii, On-line evaluation of spatial dose-distribution by using a 15-m-long plastic scintillation-fiber detector, IEEE Nuclear Science Symposium Conference Record, Dresden, Germany 19-25 (2008) 965-966.
  9. S. Soramoto, M. Notani, Y. Fukano, S. Imai, T. Iguchi, M. Zakazawa, A study of distributed radiation sensing method using plastic scintillation fiber, in: Proceeding of the 7th Workshop on Radiation Detectors and Their Uses, Tsukuba, Japan, vols. 26-27, 1993, pp. 171-172.
  10. T. Emoto, T. Trorii, T. Nozaki, H. Ando, Measurement of spatial dose-rate distribution using a position sensitive detector, Proceeding of the 8th workshop on Radiation Detectors and Their Uses 25-27 (1994) 119-121.
  11. D.L. Chichester, S.M. Watson, J.T. Johnson, Comparison of BCF-10, BCF-12, and BCF-20 scintillation fiber use in a 1-dimensional linear sensor, in: IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Anaheim, CA, USA, 29 October e 3 November, 2012, pp. 365-369.
  12. H. Gamo, M. Kondo, T. Hashimoto, R. Yayama, T. Tsukiyama, Development of a PSF-detector for contaminated areas, Prog. Nucl. Energy 4 (2014) 695-698.
  13. H.H. Saito, M. Sutton, P. Zhao, E. Swanberg, Review of Decontamination Progress Surveying Technologies for Wide-Area Radiological Contamination, Lawrence Livermore National Security, Livermore, Ca., USA, 2019.
  14. S. Imai, S. Soramoto, K. Mochiki, T. Iguchi, M. Nakazawa, New radiation detector of plastic scintillation fiber, Rev. Sci. Instrum. 62 (1991) 1093-1096. https://doi.org/10.1063/1.1142012
  15. C. Whittaker, C.A.G. Kalnins, D. Ottaway, N.A. Spooner, H. Ebendorff-Heide-priem, Transmission loss measurements of plastic scintillating optical fibres, Opt. Mater. Express 9 (2019) 1-12. https://doi.org/10.1364/ome.9.000001
  16. K.K. Hamamatsu Photonics, Photon counting head H11890 series datasheet, Available online: https://www.hamamatsu.com/resources/pdf/etd/H11890_TPMO1052E.pdf.
  17. M. Rupali, P. Amit, A review paper on general concepts of "Artificial intelligence and machine learning", IARJSET 4 (2017) 79-82.
  18. S.J. Russell, P. Norvig, in: Artificial Intelligence: A Modern Approach, fourth ed., Prentice Hall, NJ, USA, 2020.
  19. F. Chollet, Deep Learning with Python, Manning Publications, Inc.: Shelter Island, NY, USA, 2017.
  20. R.G. Peyvandi, S.Z. Islami Rad, Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows, Eur. Phys. J. Plus. 132 (2017) 511. https://doi.org/10.1140/epjp/i2017-11766-3
  21. R.G. Peyvandi, S.Z. Islami Rad, Precise prediction of radiation interaction position in plastic rod scintillators using a fast and simple technique: artificial neural network, Nucl. Eng. Technol. 50 (2018) 1154-1159. https://doi.org/10.1016/j.net.2018.06.005
  22. Saint-Gobain Crystals, Plastic scintillating fibers product sheet, Available online: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/fiber-product-sheet.pdf.
  23. D.F. Swinehart, The beer-lambert law, J. Chem. Educ. 39 (1962) 333. https://doi.org/10.1021/ed039p333
  24. A.F.M. Agarap, Deep learning using rectified linear units (ReLU), Available online: arxiv.org/pdf/1803.08375.
  25. D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, in: 3rd International Conference for Learning Representations, San Diego, 2015. Available online: arxiv.org/pdf/1412.6980.
  26. Shi-Biao Tang, Qing-Li Ma, Ze-Jie Yin, H. Huang, Simulation study on detection efficiency of plastic scintillating fiber under γ-ray radiation, Radiat. Phys. Chem. 77 (2008) 115-120. https://doi.org/10.1016/j.radphyschem.2007.09.005