DOI QR코드

DOI QR Code

Extension of the NEAMS workbench to parallel sensitivity and uncertainty analysis of thermal hydraulic parameters using Dakota and Nek5000

  • Delchini, Marc-Olivier G. (Reactor and Nuclear Systems Division, Oak Ridge National Laboratory) ;
  • Swiler, Laura P. (Center for Computing Research, Sandia National Laboratories) ;
  • Lefebvre, Robert A. (Reactor and Nuclear Systems Division, Oak Ridge National Laboratory)
  • 투고 : 2020.11.05
  • 심사 : 2021.04.03
  • 발행 : 2021.10.25

초록

With the increasing availability of high-performance computing (HPC) platforms, uncertainty quantification (UQ) and sensitivity analyses (SA) can be efficiently leveraged to optimize design parameters of complex engineering problems using modeling and simulation tools. The workflow involved in such studies heavily relies on HPC resources and hence requires pre-processing and post-processing capabilities of large amounts of data along with remote submission capabilities. The NEAMS Workbench addresses all aspects of the workflows involved in these studies by relying on a user-friendly graphical user interface and a python application program interface. This paper highlights the NEAMS Workbench capabilities by presenting a semiautomated coupling scheme between Dakota and any given package integrated with the NEAMS Workbench, yielding a simplified workflow for users. This new capability is demonstrated by running a SA of a turbulent flow in a pipe using the open-source Nek5000 CFD code. A total of 54 jobs were run on a HPC platform using the remote capabilities of the NEAMS Workbench. The results demonstrate that the semiautomated coupling scheme involving Dakota can be efficiently used for UQ and SA while keeping scripting tasks to a minimum for users. All input and output files used in this work are available in https://code.ornl.gov/neams-workbench/dakota-nek5000-study.

키워드

과제정보

This work was funded by the Nuclear Energy Advanced Modeling and Simulation program (NEAMS) within the Nuclear Energy Office of the US Department of Energy. The work was performed at Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL). This manuscript has been authored by UT-Battelle, LLC (ORNL), under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paidup, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government.

참고문헌

  1. ANSYS Inc, ANSYS ICEM CFD. https://www.ansys.com/-/media/Ansys/corporate/resourcelibrary/brochure/ansys-icem-cfd-brochure.pdf.
  2. Siemens, HEEDS, Introducing ANSYS Workbench 2.0. https://www.plm.automation.siemens.com/global/en/products/simcenter/simcenter-heeds.html, 2020.
  3. MOOSE Peacock. https://mooseframework.inl.gov/old/wiki/Peacock/, 2010.
  4. Cody J. Permann, Derek R. Gaston, David Andrs, Robert W. Carlsen, Fande Kong, Alexander D. Lindsay, Jason M. Miller, John W. Peterson, Andrew E. Slaughter, Roy H. Stogner, Richard C. Martineau, MOOSE: Enabling massively parallel multiphysics simulation, SoftwareX 11 (2020) 100-430.
  5. Will Schroeder, Ken Martin, Bill Lorensen, Bill, The Visualization Toolkit, fourth ed., Kitware, 2006, ISBN 978-1-930934-19-1, 2006.
  6. W.A. Wieselquist, R.A. Lefebvre, M.A. Jessee (Eds.), SCALE Code System, ORNL/TM-2005/39, Oak Ridge National Laboratory, Oak Ridge, TN, 2020. Version 6.2.4.
  7. B.T. Rearden, R.A. Lefebvre, J.P. Lefebvre, K.T. Clarno, M.A. Williams, L.M. Petrie, U. Mertyurek, Modernization Enhancements in SCALE 6.2., in: PHYSOR 2014, Kyoto, Japan, 2014. Sept. 28-Oct. 3.
  8. Christopher Richard Stanek, Overview of DOE-NE NEAMS program, United States: N, 2019, https://doi.org/10.2172/1501761. Web.
  9. R.A. Lefebvre, B.R. Langley, L.P. Miller, M.O.G. Delchini, M. Baird, J.P. Lefebvre, NEAMS Workbench Status and Capabilities, ORNL/TM-2019/1314, Oak Ridge National Laboratory, Oak Ridge, TN, 2019.
  10. H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, K. Bonnell, M. Miller, G.H. Weber, C. Harrison, D. Pugmire, T. Fogal, C. Garth, A. Sanderson, E.W. Bethel, M. Durant, D. Camp, J.M. Favre, O. Rubel, Navratil Paul, " VisIt, An end-user tool for visualizing and analyzing very large data, in: E. Wes Bethel, H. Childs, C. Hansen (Eds.), Book Chapter in High Performance Visualization: Enabling Extreme-Scale Scientific Insight, Chapman and Hall/CRC, October, 2012.
  11. R.A. Lefebvre, B.R. Langley, A.B. Thompson, M3MS-16OR0401086 - Report on NEAMS Workbench Support for MOOSE Applications, ORNL/TM-2016/572, M3MS-16OR0401086-Report on NEAMS Workbench Support for MOOSE Applications, Oak Ridge National Laboratory, Oak Ridge, TN, 2016.
  12. NEK5000 Version 17.0. Release Date. Argonne National Laboratory, Illinois. Available: https://nek5000.mcs.anl.gov.
  13. B.M. Adams, W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy, M.S. Eldred, R.W. Hooper, P.D. Hough, K.T. Hu, J.D. Jakeman, M. Khalil, K.A. Maupin, J.A. Monschke, E.M. Ridgway, A.A. Rushdi, D.T. Seidl, J.A. Stephens, L.P. Swiler, J.G. Winokur, Dakota, A multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.12 user's manual, Sandia technical report SAND2020-5001, May 2020.
  14. Robert A. Lefebvre, Brandon R. Langley, Jordan P. Lefebvre, Workbench Analysis Sequence Processor, ORNL/TM-2017/619, UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN, 2017.
  15. Dakota, Sandia national Laboratories, 2020. https://dakota.sandia.gov.
  16. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408. https://doi.org/10.1016/j.jnucmat.2014.09.077
  17. L.P. Swiler, R.L. Williamson, D.M. Perez, Calibration of a fuel Relocation model in BISON, in: American Nuclear Society Mathematics and Computational Methods (M&C) meeting, May 2013.
  18. K. Gamble, L. Swiler, Uncertainty quantification and sensitivity analysis applications to fuel performance modeling, in: TOPFUEL American Nuclear Society Conference, Sept. 2016.
  19. L. Swiler, K. Gamble, R. Schmidt, and R. Williamson, reportSensitivity Analysis of OECD Benchmark Tests in BISON, Sandia Technical Report SAND 2015-8088.
  20. N.E. Stauff, R.A. Lefebvre, L.P. Swiler, T.K. Kim, B.T. Rearden, Application of the interface between dakota and the argonne reactor computation codes in the NEAMS workbench, in: American Nuclear Society ANS Annual Meeting, Philadelphia, June 2018.
  21. K. Zeng, N.E. Stauff, J. Hou, T.K. Kim, Development of multi-objective core optimization framework and application to sodium-cooled fast test reactors, Prog. Nucl. Energy 120 (2020) 103184. https://doi.org/10.1016/j.pnucene.2019.103184
  22. M.G. Delchini, L.P. Swiler, E.P. Popov, W.D. Pointer, "An Uncertainty Quantification of the Computational Fluid Dynamics Solution to the Modeling of the Contact Point in a Wire-Wrapped Fuel Assembly, ORNL/TM-2018/959 (August 2018, American Nuclear Society ANS Annual Meeting, Philadelphia, June 2018.
  23. L.P. Swiler, B.M. Adams, M.S. Eldred, Dakota: bridging advanced scalable UQ algorithms with production deployment, in: R. Ghanem, D. Higdon, H. Owhadi (Eds.), In Springer Handbook on Uncertainty Quantification, 2015, https://doi.org/10.1007/978-3-319-11259-6_52-1.
  24. Laura P. Swiler, Robert A. Lefebvre, Brandon R. Langley, Adam B. Thompson, Integration of Dakota into the NEAMS Workbench, Sandia Technical Report SAND2017-7492, July 2017.
  25. G.K. El Khoury, P. Schlatter, A. Noorani, et al., Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers, Flow, Turbul. Combust. 91 (2013) 475-495, https://doi.org/10.1007/s10494-013-9482-8.
  26. H. Yuan, E. Merzari, Y. Yu, A. Obabko, M.A. Yildiz, G. Botha, Y.A. Hassan, Applying tet-to-hex meshing method to complex nuclear reactor geometries for spectral element code, in: 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2019, Portland, 2019, pp. 127-135.
  27. Mustafa Alper Yildiz, Elia Merzari, Yassin A. Hassan, Spectral and modal analysis of the flow in a helical coil steam generator experiment with large eddy simulation, Int. J. Heat Fluid Flow 80 (2019) 108486. https://doi.org/10.1016/j.ijheatfluidflow.2019.108486
  28. Haomin Yuan, Mustafa A. Yildiz, Elia Merzari, Yiqi Yu, Aleksandr Obabko, Gerrit Botha, Giacomo Busco, Yassin A. Hassan, Duy Thien Nguyen, Spectral element applications in complex nuclear reactor geometries: tet-to-hex meshing, Nucl. Eng. Des. 357 (110422) (2020). ISSN 0029-5493.
  29. B.J. Boersma, Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000, J. Phys. 318 (2011), 042045. https://doi.org/10.1088/1742-6596/318/4/042045
  30. Marc-Olivier Delchini, Robert Lefebvre, William D. Pointer, Integration of the Nek5000 Computational Fluid Dynamics Code with the NEAMS Workbench, ORNL/SPR-2019/1349, September 2019.
  31. Exodus website. https://gsjaardema.github.io/seacas/html/index.html#intro, 2020.
  32. Y. Fan, M.- O Delchini, R. Lefebvre, Verification of Nek4nuc (Nek5000 Integrated in NEAMS Workbench) via Turbulent Pipe Flow Simulation, in: Winter Meeting and Nuclear Technology Expo, under Review, 2020.
  33. CUBIT, Sandia national Laboratories. https://cubit.sandia.gov/index.html, 2020.
  34. Nicolas Offermans, Oana Marin, Michel Schanen, Jing Gong, Paul Fischer, Philipp Schlatter, Aleks Obabko, Peplinski Adam, Maxwell Hutchinson, Elia Merzari, On the strong scaling of the spectral element solver Nek5000 on petascale systems, in: Proceedings of the Exascale Applications and Software Conference 2016 (EASC '16), Association for Computing Machinery, New York, NY, USA, 2016, pp. 1-10. Article 5.
  35. DSL, domain-specific language. https://en.wikipedia.org/wiki/Domain-specific_language, 2020.
  36. M. Zagarola, A. Smits, Mean-flow scaling of turbulent pipe flow, J. Fluid Mech. 373 (1998) 33-79, https://doi.org/10.1017/S0022112098002419.
  37. ANSYS Workbench 2.0. https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v3-i1-ansys-workbench-12.pdf, 2009.
  38. G.K. El Khoury, P. Schlatter, A. Noorani, et al., Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers, Flow, Turbul. Combust. 91 (2013) 475-495, https://doi.org/10.1007/s10494-013-9482-8.
  39. B.J. Boersma, Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000, J. Phys. 318 (2011), 042045. https://doi.org/10.1088/1742-6596/318/4/042045
  40. J.M.J. Den Toonder, F.T.M. Nieuwstadt, Reynolds number effects in a turbulent pipe flow for low to moderate Re, Phys. Fluids 9 (1997) 3398. https://doi.org/10.1063/1.869451
  41. Paul Fisher, Julia Mullen, Filter-based stabilization of spectral element methods, Compt. Rendus Acad. Sci. Math. 332 (3) (January 2001) 265-270.
  42. A. Dean, D. Voss, D. Draguljic, Design and Analysis of Experiments, Springer Texts in Statistics, 2017.
  43. C. Douglas, Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2017.
  44. J.C. Helton, F.J. Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. Eng. Syst. Saf. 81 (1) (2003) 23-69. https://doi.org/10.1016/S0951-8320(03)00058-9