Acknowledgement
This research was supported by Chungbuk National University Korea National University Development Project (2020)
References
- Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of experimental botany 60(4):1085-1092 https://doi.org/10.1093/jxb/ern301
- Ariizumi T, Lawrence PK, Steber CM (2011) The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant physiology 155(2):765-775 https://doi.org/10.1104/pp.110.166272
- Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant molecular biology 69(4):473-488 https://doi.org/10.1007/s11103-008-9435-0
- Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131(5):1055-1064 https://doi.org/10.1242/dev.00992
- Dill A, Jung H-S, Sun T-p (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences 98(24):14162-14167 https://doi.org/10.1073/pnas.251534098
- Dill A, Sun T-p (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159(2):777-785 https://doi.org/10.1093/genetics/159.2.777
- Dill A, Thomas SG, Hu J, Steber CM, Sun T-p (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. The Plant Cell 16(6):1392-1405 https://doi.org/10.1105/tpc.020958
- Fu X, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. The Plant Cell 14(12):3191-3200 https://doi.org/10.1105/tpc.006197
- Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z-L, Powers SJ, Gong F, Phillips AL, Hedden P, Sun T-p (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell 18(12):3399-3414 https://doi.org/10.1105/tpc.106.047415
- Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. The Plant Cell 21(5):1328-1339 https://doi.org/10.1105/tpc.109.066969
- Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H, Kojima M, Katoh E, Xiang H, Tanahashi T, Hasebe M (2007) The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. The Plant Cell 19 (10):3058-3079
- Hong CP, Kim J, Lee J, Yoo S-i, Bae W, Geem KR, Yu J, Jang I-b, Jo IH, Cho H, Shim D, Ryu H (2021) Gibberellin signaling promotes the secondary growth of storaage roots in Panax ginseng. International Journal of Molecular Science 22:8694 https://doi.org/10.3390/ijms22168694
- Hong J, Kim H, Ryu H (2018) Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng. J Plant Biotechnology (45):306-314
- Hu SY (1976) The genusPanax (ginseng) in Chinese medicine. Economic Botany 30(1):11-28 https://doi.org/10.1007/BF02866780
- Jang H-J, Han I-H, Kim Y-J, Yamabe N, Lee D, Hwang GS, Oh M, Choi K-C, Kim S-N, Ham J (2014) Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells. Journal of agricultural and food chemistry 62(13):2830-2836 https://doi.org/10.1021/jf5000776
- Jo I-H, Lee J, Hong C, Lee D, Bae W, Park S-G, Ahn Y, Kim Y, Kim J, Lee J (2017) Isoform sequencing provides a more comprehensive view of the panax ginseng transcriptome. Genes 8(9):228 https://doi.org/10.3390/genes8090228
- King KE, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159(2):767-776 https://doi.org/10.1093/genetics/159.2.767
- Kumar S, Stecher G, Tamura K (2016) MEGA7: molecu lar evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33(7):1870-1874 https://doi.org/10.1093/molbev/msw054
- Lee J, Kim H, Park SG, Hwang H, Yoo Si, Bae W, Kim E, Kim J, Lee HY, Heo TY (2021) Brassinosteroid-BZR1/2-WAT1 module determines the high level of auxin signalling in vascular cambium during wood formation. New Phytologist 230(4):1503-1516 https://doi.org/10.1111/nph.17265
- Lee S, Cheng H, King KE, Wang W, He Y, Hussain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes & development 16(5):646-658 https://doi.org/10.1101/gad.969002
- McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-p, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell 15(5):1120-1130 https://doi.org/10.1105/tpc.010827
- Nelson SK, Steber CM (2018) Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development. Annual Plant Reviews online:153-187
- Olszewski N, Sun T-p, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell 14 (suppl 1):S61-S80 https://doi.org/10.1105/tpc.010476
- Reid JB (1993) Plant hormone mutants. Journal of Plant Growth Regulation 12(4):207-226 https://doi.org/10.1007/BF00213038
- Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiologia Plantarum 100(3):550-560 https://doi.org/10.1034/j.1399-3054.1997.1000317.x
- Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299(5614):1896-1898 https://doi.org/10.1126/science.1081077
- Seo E, Kim S, Lee S, Oh B-C, Jun H-S (2015) Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice. Nutrients 7(4):3038-3053 https://doi.org/10.3390/nu7043038
- Sun T-p (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant physiology 154(2):567-570 https://doi.org/10.1104/pp.110.161554
- Sun T-p (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Current Biology 21(9):R338-R345 https://doi.org/10.1016/j.cub.2011.02.036
- Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T-p (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant physiology 135(2):1008-1019 https://doi.org/10.1104/pp.104.039578
- Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-y, Yue-ie CH, Kitano H, Yamaguchi I (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693 https://doi.org/10.1038/nature04028
- Waminal NE, Pellerin RJ, Jang W, Kim HH, Yang T-J (2018) Characterization of chromosome-specific microsatellite repeats and telomere repeats based on low coverage whole genome sequence reads in Panax ginseng. Plant Breeding and Biotechnology 6(1):74-81 https://doi.org/10.9787/PBB.2018.6.1.74
- Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J (2017) Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 6(11):gix093
- Yasukawa K, Whang W-K, Ko S-K (2016) Inhibitory effects of ginseng (Panax ginseng) berry on tumour promotion and inflammatory ear oedema induced by TPA. Journal of Nutritional Therapeutics 4(4):143-148 https://doi.org/10.6000/1929-5634.2015.04.04.6