DOI QR코드

DOI QR Code

Natural frequencies of FGM nanoplates embedded in an elastic medium

  • Bouafia, Halima (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Chikh, Abdelbaki (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Al-Zahrani, Mesfer Mohammad (Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • Received : 2021.04.29
  • Accepted : 2021.06.21
  • Published : 2021.09.25

Abstract

The small scale impact on the vibrational properties of "functionally graded" (FG) nanoplate embedded in an elastic medium is examined. The formulation is based on the four-unknown refined integral plate theory on aggregate with the nonlocal elasticity theory. Contrary to other theories, this one involves only four unknown variables. The solution procedure is obtained by employing the motion differential equations of physical phase that are converted into set of "linear algebraic equations". After, these are solved by a computer code. The influences of aspect ratio, material index, nonlocal parameter and elastic medium stiffness on the different modal vibrations of FG nanoplate are explored. The results demonstrate the significant impact of different physical and geometrical parameters on the vibration behavior of FG nanoplate.

Keywords

Acknowledgement

We would like to thank "Izmir Institute of Technology, Biotechnology and Bioengineering Research and Application Center" and "Izmir Institute of Technology, Center for Materials Research". This work was funded by Izmir Institute of Technology Research Fund by Project #2014IYTE22.

References

  1. Abdulrazzaq, M.A. Kadhim, Z.D., Faleh, N.M. and Moustafa, N.M. (2020a), "A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads", Struct. Monit. Maint., 7(1), 27-42. https://doi.org/10.12989/smm.2020.7.1.027.
  2. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  3. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  4. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. http://doi.org/10.12989/sem.2015.54.1.069
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  6. Akbas, S. D. (2020b), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/SCS.2020.35.6.729.
  7. Akbas, S.D. (2020a), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. http://doi.org/10.12989/anr.2020.8.4.277
  8. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
  9. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities" Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  10. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load" Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/SEM.2020.75.6.713.
  11. Attia, M.A. and Abdel Rahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  12. Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  13. Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory", Int. J. Struct. Stabil. Dyn., 19(11), 1950127. https://doi.org/10.1142/s021945541950127x.
  14. Avcar, M. (2016), "Free vibration of non-homogeneous beam subjected to axial force resting on pasternak foundation", J. Polytechnic Politeknik Dergisi., 19(4), 507-512. https://doi.org/10.2339/2016.19.4.507-512.
  15. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  16. Avcar, M., and Mohammed, W.K.M., (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11, 232. https://doi.org/10.1007/s12517-018-3579-2.
  17. Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A., 123(5), 332. https://doi.org/10.1007/s00339-017-0908-3.
  18. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/SEM.2016.60.4.707.
  19. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/jnanor.62.108.
  20. Bouhadra, A., Menasria, A. and Ali Rachedi, M. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. http://doi.org/10.12989/anr.2021.10.4.313
  21. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle" Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  22. Chami, K, Messafer, T., and Hadji, L., (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
  23. Civalek, O., Dastjerdi, S., Akbas, S.D. amd Akgoz, B. (2020), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method. Appl. Sci. https://doi.org/10.1002/mma.7069.
  24. Ebrahimi, F. and Barati, M.R. (2017a), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
  25. Ebrahimi, F. and Barati, M.R. (2017b), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Wave. Random Complex., 28(2), 326 342. https://doi.org/10.1080/17455030.2017.1346331.
  26. Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007. https://doi.org/10.1088/0964-1726/24/12/125007
  27. Eltaher, M.A. Mohamed, S.A. and Melaibari, A. (2020b), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  28. Eltaher, M.A., Almalki, T.A., Almitani, K. and Ahmed, K.I. (2019a), "Participation factor and vibration of carbon nanotube with vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/jnanor.57.158.
  29. Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019b), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/jnanor.57.136.
  30. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020a), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  31. Eltaher, M.A. and Mohamed, S.A. (2020b), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  32. Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2018b), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Wave. Random Complex., 29(2). 264-280. https://doi.org/10.1080/17455030.2018.1429693.
  33. Eltaher, M.A. and Mohamed, N.A. (2020a), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. http://doi.org/10.12989/sss.2020.25.4.501.
  34. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018a), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136.
  35. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  36. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  37. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircr. Spacecr. Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  38. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037
  39. Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://doi.org/10.12989/scs.2020.36.3.293.
  40. Ghannadpour, S.A.M. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311.
  41. Hadji, L. (2020), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupled Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
  42. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. http://doi.org/10.12989/anr.2021.10.3.281.
  43. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  44. Hamed, M.A., Salwa A Mohamed, S.A., Mohamed, A. and Eltaher, M.A., (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  45. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/jnanor.51.24.
  46. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. http://doi.org/10.12989/scs.2015.18.3.693.
  47. Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Vess. T., 138(6), 061202. https://doi.org/10.1115/1.4033701.
  48. Kar, V.R. and Panda, S.K. (2020), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. http://doi.org/10.12989/scs.2015.18.3.693.
  49. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421. https://doi.org/10.1142/s0217984916504212.
  50. Karami, B. and Janghorban, M. (2019a), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin Wall. Struct., 143, 106-227.https://doi.org/10.1016/j.tws.2019.106227.
  51. Karami, B., Janghorban, M. (2019b), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  52. Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
  53. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018b), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 095440621875645.
  54. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018a), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/SCS.2018.29.3.349.
  55. Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., 36(6), 689-702. https://doi.org/10.12989/SCS.2020.36.6.689.
  56. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. http://doi.org/10.12989/cac.2020.26.1.031.
  57. Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4.
  58. Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034.
  59. Kolahchi, R, Bidgoli, A., Mohammad M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/SEM.2015.55.5.1001.
  60. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  61. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.
  62. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  63. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Composite Structures, 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
  64. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(asce)em.1943-7889.0001519.
  65. Mehar, K., Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 231, 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  66. Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
  67. Oner, E., Yaylaci, M., Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. http://doi.org/10.12989/sem.2015.54.4.607
  68. Pandey, H.K., Agrawal, H., Panda, S.K., Hirwani, C.K., Katariya, P.V., Dewangan, H.C. (2020), "Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite", Struct. Eng. Mech., 73(6), 715-724. http://doi.org/10.12989/sem.2020.73.6.715.
  69. Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141-152. http://doi.org/10.12989/cme.2020.2.2.141.
  70. Rahmani, O. and Asemani, S.S. (2020), "Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories", Struct. Eng. Mech., 74(2), 175-187. https://doi.org/10.12989/SEM.2020.74.2.175.
  71. Safa, A., Hadji, L., Bourada, M., and Zouatnia, N., (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  72. Sedighi, H.M. and Yaghootian, A. (2016), "Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity", J. Appl. Mech. Tech. Phys., 57(1), 90-100. https://doi.org/10.1134/s0021894416010107.
  73. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015b), "Modified model for instability analysis of symmetric FGM double-sided nano-bridge: Corrections due to surface layer, finite conductivity and size effect", Compos. Struct., 132, 545-557. https://doi.org/10.1016/j.compstruct.2015.05.076.
  74. Sedighi, H.M., Keivani, M. and Abadyan, M. (2015a), "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B Eng., 83, 117-133. https://doi.org/10.1016/j.compositesb.2015.08.029.
  75. Selmi, A. (2020a), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://doi.org/10.12989/sss.2020.26.3.361.
  76. Selmi, A. (2020b), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.
  77. Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/jnanor.61.97.
  78. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102.
  79. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/SCS.2020.37.1.099.
  80. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  81. Timesli, A. (2020a), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. http://doi.org/10.12989/anr.2020.9.2.069
  82. Timesli, A. (2020b), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://doi.org/10.12989/cac.2020.26.1.053.
  83. Timesli, A. (2020c), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://doi.org/10.12989/cac.2020.26.1.053
  84. Timesli, A., Braikat, B., Jamal, M. and Damil, N. (2017), "Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression", Comptes Rendus Mcanique, 345, 158-168. https://doi.org/10.1016/j.crme.2016.12.002.
  85. Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Ouahiba Taleb, O. and Abdelmoumen Anis Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., 1(1), 1-19. https://doi.org/10.12989/cme.2019.1.1.001.
  86. Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous-cellular core reinforced with graphene nanoplatelets", Compos. Struct., 112700. https://doi.org/10.1016/j.compstruct.2020.112700.
  87. Yaylac, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. http://doi.org/10.12989/sem.2013.48.2.241
  88. Yaylaci, E.U., Yaylaci, M., O lmez, H., Birinci, A. (2020b), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. http://dx.doi.org/10.12989/cac.2020.25.6.551.
  89. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. http://doi.org/10.12989/sem.2016.57.6.1143.
  90. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
  91. Yaylaci, M., Adiyaman, G., Oner, E., Birinci, A. (2020a), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. http://doi.org/10.12989/sem.2020.76.3.325.
  92. Yaylaci, M., Adiyaman, G., Oner, E., Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. http://doi.org/10.12989/cac.2021.27.3.199.
  93. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  94. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. http://doi.org/10.12989/sem.2019.72.6.775.
  95. Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037.
  96. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.

Cited by

  1. A novel research on the solute redistribution phenomenon of sub-rapid twin-roll cast Al-50 wt.% alloy treated by semi-solid heat treatment vol.15, 2021, https://doi.org/10.1016/j.jmrt.2021.11.074