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Abstract: Detection of fire accelerants from fire residues is critical to determine whether the case was arson

or accidental fire. However, to develop a standardized model for determining the presence or absence of fire

accelerants was not easy because of high temperature which cause disappearance or combustion of components

of fire accelerants. In this study, logistic regression, random forest, and support vector machine models were

trained and evaluated from a total of 728 GC-MS analysis data obtained from actual fire residues. Mean

classification accuracies of the three models were 63 %, 81 %, and 84 %, respectively, and in particular, mean

AU-PR values of the three models were evaluated as 0.68, 0.86, and 0.86, respectively, showing fine

performances of random forest and support vector machine models.
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1. Introduction

The detection of fire accelerants in fire residues is

crucial in differentiating fires caused by arson from

general fires. Gasoline, kerosene, diesel, organic

solvents, and candles are commonly used fire

accelerants in arson.1-3 The most widely used method

for analyzing fire residues collected from the fire

scene is gas chromatography-mass spectroscopy

(GC-MS),4-6 which allows the separation of each

component among the numerous materials. To extract

fire accelerants from residues, several extraction

techniques are performed including the adsorption of

low-boiling-point compounds by solid-phase micro-

extraction (SPME), or extraction of high-boiling-

point compounds through the solvents such as dichloro-

methane or ethyl ether. The resulting full-spectrum

of GC/MS data is used to verify the presence of fire

accelerants, and through a series of steps illustrated

as a decision tree in Fig. 1, various components are

detected and classified.

Decision trees are used in a variety of fields as the

most fundamental form of expert systems in the

standardization of data interpretation with enhanced

efficiency.7-9 However, naive application of a decision

tree cannot garantee reasonable trust level in the

detection of fire accelerants from fire residues owing

to the denaturation or loss of critical components
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through the high temperature and combustion process

in the fire scene, as well as the generation of compounds

through the combustion of various petroleum-based

synthetic materials such as resin, plastic, and fiber.10

Therefore, the investigator must have a high level of

expertise for accurate detection. In modern society

with the trend of continuous increase in property

damage due to fire, the more emphasis has been

placed on fire analysis steadily, with a concurrent

rise in the demand for a standard analytical model to

determine the presence of fire accelerants from fire

residues.

In general, a supervised learning method is used

for designing a model which learns classification

criteria through the labeled data among the machine-

learning methods. There are several models known

to exhibit high performance in classification such as

the decision tree that mimics the classification criteria

employed by humans, the logistic regression model with

relatively simple structures and advantages in avoiding

overfitting or computing resource acquisition,11 the

random forest model that assembles multiple decision

trees to solve the problems of overfitting or reduced

degree of freedom due to sequential categorization,

which is an inherent limitation of decision trees,12

and the support vector machine that explores the

optimum hyperplane categorizing the vector data

projected from a low dimension to a high dimension

using various kernel functions.13 In this study, the

classification performance of the logistic regression,

random forest, and support vector machine models

in classifying fire accelerants was compared based

on the dataset acquired from actual fire residues, and

the quantitative data for marker components were

also extracted from the GC-MS data.

2. Methods

2.1. GC/MS

Raw data were obtained from analyzing 728 cases

on fire residues in fire accidents that occurred between

2018 and 2020 in the regions administered by the

National Forensic Service Daejeon Institute. For the

data analysis, GC-MS (Agilent technologies GC6890N

/ MS5975C, Santa Clara, CA, USA) was used, and

the Supelco SPME fiber assembly carboxen/polydi-

methylsiloxane with film thickness(df) 75 μm and

needle size of 23 ga (Sigma-Aldrich, USA) was used

for the solid-phase microextraction of each case. For

the solvent extraction, diethyl ether (Dae-jung

Fig. 1. Example of simple decision tree for detection of fire accelerants.
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Chemicals, Siheung, South Korea) was used. The

analytical conditions for GC-MS are presented in

detail in Table 1.

2.2. Quantitative data interpretation and

preprocessing

The GC-MS data were obtained as the mass to

charge ratio (m/z) of the ions detected using GC-MS

according to the retention time (Rt). To apply such

basic data in supervised learning, the label and

feature of each data must be defined and compiled in

a database. All data were labeled as fire accelerant –,

gasoline +, kerosene +, diesel +, organic solvents +,

and candles +. As depicted in Fig. 2, a total of 42

chemical species including methyl tert-butyl ether

(MTBE), ethyl tert-butyl ether (ETBE), tertiary amyl

methyl ether (TAME), toluene, fatty acid methyl

esters (FAMEs), C2-Benzenes, C3-Benzenes, C4-

Benzenes, naphthalene, and n-alkanes (carbon number

6-26), which are widely used in the detection of

petroleum-based fossil fuels, were selected as the

markers in the quantitative criteria of the base peak

intensity of each compound based on the GC-MS

data. As the absolute quantity for each detected

compound significantly varied according to the

analytical conditions and states of samples, the results

were standardized as Px, which is calculated by

dividing the base peak intensity of specific component

x by sum of the base peak intensity of every marker

detected in a given sample.

2.3. Cross-validation and dataset preprocessing

for learning

The overall design of classification models is

illustrated in Fig. 3. To compare the performance

across the logistic regression, random forest, and support

vector machine models under identical conditions, the

overall structure was maintained constant except for the

type of the classification model. In data preprocessing,

all input values scaled as ln(1+Px) to prevent the

underestimation of the presence of a marker when

the fraction indicated a trace amount. To verify the

Table 1. Analysis conditions of GC-MS

GC-MS Condition

Inlet 270 oC, 4.8 psi

Oven 40 oC (3 min) → (10 oC/min) → 280 oC (10 min)

Carrier gas He 0.8 mL/min

Ion source temp. 230 oC

Column HP-5 Capillary GC Column (30 m)

Split ratio 5:1 (SPME), 20:1 (solvent extraction)

Solvent delay 0.2 min (SPME), 2.5 min (solvent extraction)

SPME Carboxen/polydimethylsiloxane, df 75 μm, needle size 23 ga

Fig. 2. Representative marker components for hydrocarbon-based fire accelerants.
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validity of each model and explore the hyperparameters

in model optimization through the datasets in this

study, three of the four stratified data folds were used

in the hyperparameter search and cross-validation,

while the remaining data fold was used in the

training and test steps, with each dataset consisting

of 80 % training sets and 20 % test sets.

The dataset used in this study have a severe data

imbalance across labels; there were only 8 cases of

kerosene + and 17 cases of candles +, whereas there

were 351 cases of fire accelerant – and 207 cases of

gasoline +. Such an imbalance in input data labeling

is known to cause an unintended bias based on the

input data quantity in the model training and test sets

to ultimately degrade the model performance.14 To

solve this problem prior to training, upsampling was

applied to set an identical data quantity in each label

of the training set during cross-validation and model

learning. Adaptive synthetic sampling (ADASYN)

was used to achieve a high level of performance

upon the upsampling of continuous variables.15

2.4. Classification model hyperparameter search

and performance evaluation

The representative hyperparameter in logistic

regression is the C value, which is defined as the

reciprocal of the regularization parameter λ, where

lower C values indicate more conservative decisions

in the decision boundary and higher C values indicate a

higher fitting to the dataset with a higher risk of

overfitting. The mean classification accuracy and

standard deviation according to the change in the C

value of the cross-validation dataset are presented in

Table 2. The use of L2 regularization, 10−4 tolerance,

and Limited Memory Broyden–Fletcher–Goldfarb–

Shanno (LBFGS) method as the search algorithm led

to an increase in the accuracy of the model between

10−5 and 105 C values, after which the accuracy

decreased owing to overfitting. The standard deviation

for the higher mean accuracy at 0.639 was 0.042.

In the random forest model, an increase in the

number of estimators causes an increase in performance

but a simultaneous proportional increase in the required

resources for the calculation, while an increase in

maximum depth causes an increase in accuracy but a

simultaneous increase in the probability of overfitting.

As presented in Table 3, the evaluation of the cross-

validation dataset regarding the number of decision

trees and maximum depth of the optimized random

forest model applying the Gini coefficient and bootstrap

shows that the mean classification accuracy was 0.793

with a standard deviations of 0.026 for 103 decision

Fig. 3. Schematic diagram of data preprocessing, learning and evaluation process for classification models.

Table 2. Mean accuracy of logistic regression models at varying
C values

C Mean accuracy ± SD C Mean accuracy ± SD

10−4 0.110 ± 0.023 102 0.619 ± 0.029

10−3 0.123 ± 0.005 103 0.632 ± 0.035

10−2 0.167 ± 0.023 104 0.637 ± 0.043

10−1 0.322 ± 0.034 105
0.639 ± 0.042

100 0.494 ± 0.020 106 0.637 ± 0.039

101 0.584 ± 0.038 107 0.632 ± 0.044
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trees and a maximum depth of 10 layers.

The support vector machine using the radial basis

function (RBF) as a kernel is generally known to

exhibit a high classification performance compared

with those of the logistic regression or random forest

models, while it is sensitive to the C value and the

kernel variable γ. The C value-related trend in the

model is the same as that in the logistic regression

model. If γ is too small, it is difficult to obtain an

adequate classification performance as the hyperplane

searched by the model approaches a linear form. If γ

is too large, the hyperplane takes a form that indicates

an increased risk of overfitting the dataset. As

depicted in Fig. 4, the support vector machine model

at 10−3 tolerance for the cross-validation dataset

yielded the highest performance for the hyperparameter

C = 200 and γ = 25, where the mean classification

accuracy was 0.773 with a standard deviation of

0.023.

To test the trained models based on optimized

hyperparameters, the classification accuracy of each

model was expressed in confusion matrices. In addition,

the area under receiver operation characteristics (AU-

ROC) and the area under precision-recall (AU-PR)

were calculated for each model as general indicators

of the model classification performance.

3. Results and Discussion

3.1. Quantitative data interpretation

Fig. 5 depicts the mean Px of each marker

component as calculated from the cases which were

categorized as fire accelerant – , gasoline +, kerosene +,

diesel +, organic solvents +, and candles +, respectively.

As shown, various marker components were detected

even in the absence of fire accelerants due to the

components formed during a fire. MTBE, ETBE and

TAME were detected only in the case of gasoline +,

in contrast to the cases of other petroleum-based fuels,

with an abundance of aromatic compounds in

comparison to n-alkanes. The detection of n-alkanes of

carbon numbers 9-16 and 17-21 was characteristic of

Table 3. Mean accuracy of random forest models at varing hyperparameters

Random forest
Number of estimators

100 101 102 103 104

Max depth

10 0.553 ± 0.005 0.736 ± 0.027 0.790 ± 0.023 0.793 ± 0.026 0.780 ± 0.034

20 0.552 ± 0.058 0.732 ± 0.021 0.780 ± 0.045 0.786 ± 0.030 0.782 ± 0.027

30 0.552 ± 0.039 0.720 ± 0.052 0.768 ± 0.030 0.782 ± 0.026 0.782 ± 0.032

40 0.534 ± 0.007 0.731 ± 0.012 0.791 ± 0.027 0.784 ± 0.029 0.784 ± 0.029

Fig. 4. Mean accuracy of support vector machine models at varying its hyperparameters C and γ, in (a) log-scaled broad
range and (b) more specific range.
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kerosene + and diesel + respectively, and in particular,

in the case of diesel +, the FAMEs that are not

commonly found in other fire accelerants were detected.

In the case of organic solvents +, low-boiling-point

compounds rather than a specific set of chemical

species were mainly detected, which may be attributed

to the process-dependent distribution of components

in petroleum-based organic solvents whose purification

involves thermal distillation. In the case of candles +,

a notable characteristic was a high detection rate of

n-alkanes of carbon numbers above 20.

3.2. Model performance evaluation

Table 4 presents the performance evaluation results

of the logistic regression, random forest, and support

vector machine models after the training using the

training set. To evaluate the performance of the model,

the ratio of positive identifications among actual

positive instances (precision), the ratio of actual positives

among positive identified instances (recall), and the

overall accuracy of data classification were examined.

The lowest classification accuracy was 63 % for the

logistic regression model, followed by the random

forest (81 %) and support vector machine (84 %)

models. To determine the detailed error trends, the

confusion matrices for each model were expressed as in

Fig. 6. All three models exhibited the lowest recall for

kerosene with the smallest number of cases. A false-

positive trend was observed for the logistic regression

model, where approximately 46 % of the fire accelerant

– data was identified as positive, with less than 70 %

recall across all classifications except gasoline and

candles, indicating a relatively low performance. On

the contrary, the random forest model exhibited a

considerably high recall at 82 % for the fire accelerant –

data, with the rate of recall for gasoline + and diesel

Fig. 5. Mean base peak intensity ratio of each marker
component from GC-MS data of fire residues, which
were concluded as (a) gasoline, (b) kerosene, (c)
diesel, (d) organic solvents, (e) candles, and (f) no
fire accelerants were involved.

Table 4. Performance evaluation of classification models

Logistic regression Random forest Support vector machine

Precision Recall Precision Recall Precision Recall

Negative 0.84 0.55 0.88 0.82 0.90 0.92

Gasoline 0.76 0.79 0.77 0.88 0.80 0.87

Kerosene 0.33 0.50 1.00 0.50 0.50 0.50

Diesel 0.47 0.69 0.69 0.69 0.62 0.62

Solvent 0.42 0.57 0.74 0.74 0.88 0.65

Candle 0.17 0.75 0.67 0.50 0.75 0.75

Accuracy 0.63 0.81 0.84

AU-ROC 0.90 0.96 0.96

AU-PR 0.68 0.86 0.86
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+ being the highest among the three models at 89 %

and 74 %, respectively. Lastly, the rate of recall for

the fire accelerant – data in the support vector

machine model was 92 %, implying the lowest risk

of false positives. Both the random forest and support

vector machine models were found to exhibit a relative

vulnerability to the error of identifying the data of

candles + as fire accelerant – (25 % in both models)

or diesel + as gasoline + (15 % and 23 %, respectively).

Fig. 7 depicts the ROC curves and PR curves across

all classifications in each model, and the area under

(AU) of the curves to serve as the performance indicator

of positive-negative determination was calculated

and is presented in Table 4. The models are considered

to be reliable if the AU-ROC approximates to 1 as

the ROC approaches the top left corner, indicating

that the model clearly distinguishes positive or

negative. The AU-ROC was 0.90, 0.96, and 0.96,

respectively, for the logistic regression, random forest,

and support vector machine models. Though all

three models show valid discriminative power, the

random forest and support vector machine models

were shown to more accurately identify each instance

than logistic regression model. In general, the validity

of a classification model is adequately determined

based on AU-ROC; however, due to the severe

imbalance of the dataset used in this study, AU-PR

was additionally assessed for meaningful performance

comparison. The level of confidence in a positive

determination by the model increases as the average

PR curve approaches the top, which take the mean

proportion of positives across all classification data

as the baseline. The curve above the baseline verifies

the validity of the model, and as the AU-PR approaches

1, the model can be considered to indicate a higher

performance. The AU-PR of the logistic regression,

random forest, and support vector machine models

was 0.68, 0.86, and 0.86, respectively, all within a

valid range; however, the performance was substantially

lower for the logistic regression model than that of

the other two models, coinciding with the trend

observed in the confusion matrices.

4. Conclusions

In this study, for developing the model for automated

Fig. 6. Confusion matrices of (a) the logistic regression, (b)
the random forest, and (c) the support vector machine
models which are trained to classify fire accelerants.
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fire accelerant classification, datasets were created

for the indicators of fire accelerants using the GC-

MS data from 728 cases on fire residue. Cross-

validation and hyperparameter optimization were

performed, while the logistic regression, random

forest, and support vector machine models were

assessed after the training under optimum conditions.

The classification accuracy was the highest (84 %)

for support vector machine, followed by the random

forest (81 %) and the logistic regression (63 %)

models. Considering the ground truth of the data, the

three models yielded sufficiently high performance.

Notably, AU-PR was measured as 0.86, 0.86, and

0.68 respectively, ensuring a high level of performance

of support vector machine and random forest models.

Main limitation of this study comes from dataset

imbalance across labels, which caused inevitable

vulnerability of the models. In particular, the

classification accuracy was low for kerosene with a

small dataset, although the effect of the dataset

imbalance was minimized through ADASYN for

data preprocessing step and measuring AU-PR for

performance evaluation. Based on the results, the

validity was verified for the random forest and support

vector machine models through the GC-MS data.

Further studies should pursue additional assessments

and cross-validations toward the enhanced performance

and validity of the models via a continuous collection

of the GC-MS data on fire residues for model

learning and validation, as well as the introduction

of the validation set using isolated datasets.
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