Acknowledgement
본 연구는 국토교통부 도시건축 연구개발사업의 연구비 지원 (21AUDP-B127891-05)에 의해 수행되었습니다.
References
- Bauer, S., Wiest, R., Nolte, L. P., Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies, Physics in Medicine & Biology, 58(13), pp. 97-129.
- Belsky, M., Sacks, R., Brilakis, I. (2016). Semantic enrichment for building information modeling, Computer-Aided Civil and Infrastructure Engineering, 31(4), pp. 261-274. https://doi.org/10.1111/mice.12128
- Bloch, T., Sacks, R. (2018). Comparing machine learning and rule-based inferencing for semantic enrichment of BIM models, Automation in Construction, 91, pp. 256-272. https://doi.org/10.1016/j.autcon.2018.03.018
- buildingSMART Korea, KBIMS Library v1.02, http://step1.kbims.or.kr/sub/Default.aspx (Jan. 2019).
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE transactions on pattern analysis and machine intelligence, 40(4), pp. 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Cursi, S., Simeone, D., Coraglia, U. M. (2017). An ontology-based platform for BIM semantic enrichment, Educational and research in Computer Aided Architectural Design in Europe 35, 2, pp. 649-656.
- Jung, R. K., Koo, B. S., Yu, Y. S. (2019). Using Deep Learning for automated classification of wall subtypes for semantic integrity checking of Building Information Models, Korean Institute of Building Information Modeling, 9(4), pp. 31-40.
- Kim, I. H., Kim, Y. H., Choi, J. S. (2014). Building Code Typology and Application for Open BIM based Code Checking, Korean Journal of Computational Design and Engineering, 19(3), pp. 224-235. https://doi.org/10.7315/CADCAM.2014.224
- Koo, B. S., Yu, Y. S., Jung, R. K. (2018). Machine learning based approach to building element classification for semantic integrity checking of building information models, Korean Journal of Computational Design and Engineering, 23(4), pp. 373-383. https://doi.org/10.7315/cde.2018.373
- Krahenbuhl, P., Koltun, V. (2011). Efficient inference in fully connected crfs with gaussian edge potentials, Advances in neural information processing systems, 24(13), pp. 109-117.
- Lafferty, D., McCallum, A., Pereira, F. C. N. (2001). Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, Proceedings of the Eighteenth International Conference on Machine Learning, 1(8), pp. 282-289.
- Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440.
- Lu, Q., Lee, S., Chen, L. (2018). Image-driven fuzzy-based system to construct as-is IFC BIM objects, Automation in Construction, 92, pp. 68-87. https://doi.org/10.1016/j.autcon.2018.03.034
- Ma, L., Sacks, R., Kattell, U. (2017). Building model object classification for semantic enrichment using geometric features and pairwise spatial relations, Proceedings of the Joint Conference on Computing in Construction, 1, pp. 373-380.
- Maturana, D., Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-time object recognition, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 922-928.
- Ministry of Land, Infrastructure and Transport. (2020). Basic guidelines for BIM in the construction industry.
- Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation, Proceedings of the IEEE international conference on computer vision, pp. 1520-1528.
- Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M. (2013). Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network, International conference on medical image computing and computer-assisted intervention, 2(31), pp. 246-253.
- Qi, C. R., Su, H., Mo, K., Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 652-660.
- Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition, Proceedings of the IEEE international conference on computer vision, pp. 945-953.
- Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J. (2015). 3d shapenets: A deep representation for volumetric shapes, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1912-1920.
- Xu, X., Zhou, F., Liu, B. (2018). Automatic bladde r segmentation from CT images using deep CNN and 3D fully connected CRF-RNN, International journal of computer assisted radiology and surgery, 13(7), pp. 967-975. https://doi.org/10.1007/s11548-018-1733-7
- Ying, H. Q., Lee, S. (2019). A Mask R-CNN Based Approach to Automatically Construct As-is IFC BIM Objects from Digital Images, Proceedings of the International Symposium on Automation and Robotics in Construction, 36, pp. 764-771.
- Yu, F., Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122.
- Yu, Y. S., Lee, K. E., Koo, B. S., Lee, K. H. (2021). Modeling Element Relations as Structured Graphs Via Neural Structured Learning to Improve BIM Element Classification, Journal of Civil and Environmental Engineering Research, 41(3), pp. 227-288.
- Zhao, X., Wu, Y., Song, G., Li, Z., Zhang, Y., Fan, Y. (2018). A deep learning model integrating FCNNs and CRFs for brain tumor segmentation, Medical image analysis, 43(8), pp. 98-111. https://doi.org/10.1016/j.media.2017.10.002
- Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P. H. S. (2015). Conditional random fields as recurrent neural networks, Proceedings of the IEEE International Conference on Computer Vision, pp. 1529-1537.