Acknowledgement
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330.
References
- Abderahim, B., Sadok B., Mohamed, N.H and Lamine, B. (2019), "Static, free vibration, and buckling analysis of plates using strain-based Reissner-Mindlin elements", Int. J. Adv. Struct. Eng., 11(2),211-230. https://doi.org/10.1007/s40091-019-0226-4
- Abderahim, B., Sadok, B. and Lamine, B. (2018), "Strain based triangular finite element for plate bending analysis", Mech. Adv. Mater. Struct., 27(8), 1-13. https://doi.org/10.1080/15376494.2018. 1488310
- Ali, R.S., Amin, A., Sayyed, H.S. and Mehdi, K. (2013), "Fundamental size dependent natural frequencies of nonuniform orthotropic nano scaled plates using nonlocal variational principle and finite element method", Appl. Math. Model., 37, 7047-7061. https://doi.org/10.1016/j.apm.2013.02.015.
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nano-plates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j. compstruct.2015.07.052.
- Doan, T.L., Le, P. B., Tran, T.T., Trai, V.K. and Pham, Q.H. (2021). "Free vibration analysis of functionally graded porous nano-plates with different shapes resting on elastic foundation", J. Appl. Comput. Mech., 7(3), 1593-1605. https://doi.org/10.22055/JACM.2021.36181.2807
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica., 51(1), 223-249. https://doi.org/10.1007/ s11012-015-0208-y.
- Ebraihimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. http://doi.org/10.12989/scs.2016.20.1.205.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York, NY, USA.
- Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. http://doi.org/10.12989/scs.2016.21.5.999.
- Gao, Y., Xiao, W.S. and Zu, H. (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 32(5), 469-488. http://doi.org/10.12989/scs.2019.31.5.469.
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", CMC, 59(2), 433-456. http://doi.org/10.32604/cmc.2019.06660.
- Hadjiconstantinou, N.G. and Patera, A.T. (1997), "Heterogeneous atomistic-continuum representations for dense fluid systems", Int. J. Mod Phys. C., 8(4), 967-976. https://doi.org/10.1142/S0129183197000837.
- Hashemi, S.H., Bedroud, M and Nazemnezhad, R (2013), "An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nano-plates via nonlocal elasticity", Compos. Struct., 103, 108-118. http://doi.org/10.1016/j.compstruct. 2013.02.022.
- Jung, W.Y. and Han, S.C. (2013), "Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory", Math. Probl. Eng., 49, 449-458. https://doi.org/10.1. 155/2013/476131. https://doi.org/10.1.155/2013/476131
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. (2016), "Probabilistic analysis of effect of the porosities in functionally graded material nano-plate resting on Winkler-Pasternak elastic foundations", Appl. Math. Model., 40(2), 738-749. http://doi.org/10.1016/j.apm.2015.09.093
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017)," Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-426. http://doi.org/10.12989/scs.2017.25.4.415
- Monchai, P., Boonme, C. and Somchai, C. (2016), "Free vibration analysis of FG nano-plates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos Struct., 41(2), 666-686. http://doi.org/10.1016 /j.compstruct.2016.06.045 https://doi.org/10.1016/j.compstruct.2016.06.045
- Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functional graded rectangular nano-plates based on nonlocal third-order shear deformation theory", Aero. Sci. Tech., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001.
- Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Sizedependent free flexural vibration behavior of functionally graded nano-plates", Compos. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
- Nguyen, N. V., Nguyen-Xuan, H., Lee, D. and Lee, J. (2020), "A novel computational approach to functionally graded porous plates with graphene platelets reinforcement", Thin Wall. Struct., 150, 106684. https://doi.org/10.1016/j.tws.2020.106684.
- Nguyen, N.V., Nguyen, H.X., Lee, S. and Nguyen-Xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Softw., 126, 110-126. https://doi.org/10.1016/j.advengsoft.2018.11.005.
- Nguyen, T.N., Lee, S., Nguyen, P.C., Nguyen-Xuan, H. and Lee, J. (2020), "Geometrically nonlinear postbuckling behavior of imperfect FG-CNTRC shells under axial compression using isogeometric analysis", Eur. J. Mech.-A/Solids, 84, 104066. https://doi.org/10.1016/j.euromechsol.2020.104066.
- Pham, Q.H., Nguyen, P.C., Tran, V.K., Nguyen-Thoi, T. (2021), "Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium", Defence Technology, (Articles in Press). https://doi.org/10.1016/j.dt.2021.09.006.
- Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C., Nguyen-Thoi, T. and Zenkour, A.M. (2021), "Bending and hygro thermo mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation", Mech. Adv. Mater. Struct., 28, (Articles in Press). https://doi.org/10.1080/15376494.2021.1968549.
- Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C. and Nguyen-Thoi, T. (2021), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alexandria Eng. J., (Articles in Press). https://doi.org/10.1016/j.aej.2021.06.082.
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T., Nguyen, P.C. and Pham, V.D. (2021), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Studies in Therm. Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
- Pradhan, S.C. and Murmu. T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001.
- Prandhan, S.C. and Phadikar, J.K. (2011), "Nonlocal theory for buckling of nano-plates", Int. J. Struct. Stab. Dynam., 11(3), 411-429. https://doi.org/10.1142/S021945541100418X.
- Reddy, J.N. (2004), Mechanics of laminated composite plate and shell, Theory and Analysis, CRC Press, New York, NY, USA.
- Salehipour, H., Nahvi, H. and Shahidi, A.S. (2015a), "Exact analytical solution for free vibration of functionally graded micro/nano-plates via three-dimensional nonlocal elasticity", Phys. E., 66, 350-358. https://doi.org/10.1016/j.physe.2014.10.001
- Salehipour, H., Shahidi, A.S. and Nahvi, H. (2015b), "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j .ijengsci.2015.01.005.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Method. Appl. M., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790
- Seref, D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018), "On the shear buckling of porous nano-plates using a new size-dependent quasi-3D shear deformation theory", Acta Mech., 229, 4549-4573. https://doi.org/10.1007/s00707-018-2247-7.
- Si, H., Shen, D., Xia, J. and Tahouned, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. http://doi.org/10.12989/scs.2020.36.1.001.
- Sobhy, M. (2015), "A comprehensive study on FGM nano-plates embedded in an elastic medium", Compos. Struct., 134, 966-980. http://doi.org/10.1016/j. compstruct.2015.08.102.
- Sobhy, M. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nano-plates", IJAM., 220, 289-303. https://doi.org/10.1142/S1758825117500089.
- Ta, H.D. and Nguyen, P.C. (2020), "Perturbation based stochastic isogeometric analysis for bending of functionally graded plates with the randomness of elastic modulus", Latin Am. J. Solids Struct., 17(7), e306. https://doi.org/10.1590/1679-78256066.
- Tran, T.V., Tran, T.D., Pham, Q.H., Nguyen-Thoi, T. and Tran, V.K. (2020), "An ES-MITC3 finite element method based on higherorder shear deformation theory for static and free vibration analyses of FG porous plates reinforced by GPLs", Math. Probl. Eng., 2020. https://doi.org/10.1155/2020/ 7520209.
- Tran, T.T., Nguyen, P.C. and Pham, Q.H. (2021), "Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN", Case Studies in Therm. Eng., 24, 100852. https://doi.org/10.1016/j.csite.2021.100852.
- Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2020), "An edgebased smoothed finite element for free vibration analysis of functionally graded porous (FGP) plates on elastic foundation taking into mass (EFTIM)", Math. Probl. Eng., 2020. https://doi.org/10.1155/2020/8278743
- Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2020), "Dynamic analysis of functionally graded porous plates resting on elastic foundation taking into mass subjected to moving loads using an edge-based smoothed finite element method", Shock Vib., 2020. https://doi.org/10.1155/2020/8853920.
- Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2020), "Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method", Defence Technol., http://doi.org/10.1016/j.dt.2020.06.001.
- Tran, T.T., Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264, 113737. http://doi.org/10.1016/ j.compstruct.2021.113737.
- Tran, V.K., Pham, Q.H. and Nguyen-Thoi, T. (2020), "A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations", Eng. with Comput., 1-26. http://doi.org/10.1007/s00366-020-01107-7.
- Tran, V.K., Tran, T.T., Phung, M.V., Pham, Q.H. and Nguyen-Thoi, T. (2020), "A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation", J. Nanomater., http://doi.org/10.1155/2020 /8786373.
- Wang, Q. and Varadan, V.K. (2006), "Wave characteristics of carbon nanotubes", Int. J. Solids Struct., 43(2), 254-265. https://doi.org/10.1016/j.ijsolstr.2005.02.047.
- Zenkour, A.M. and Sobhy, M. (2013), "Nonlocal elasticity theory for thermal buckling of nano-plates lying on Winkler-Pasternak elastic substrate medium", Phys. E., 53, 251-259. https://doi.org/10.1016/j.physe.2013.04.022.
- Zhou, C., Zhang, Z., Zang, J., Fang, Y. and Tahouned, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos/ Struct., 34(2), 215-226. http://doi.org/10.12989/scs.2020.34.2.215.