Acknowledgement
The authors would like to thank the financial support of the Iran National Science Foundation (INSF), Grants No. 96000574, and 97024007.
References
- Arao, Y., Taniguchi, N., Nishiwaki, T., Hirayama, N, and Kawada, H. (2012), "Strain rate dependence of the tensile strength of glass fibers", J. Mater. Sci., 47(12), 4895-4903. https://doi.org/10.1007/210853-012-6360-z.
- ASTM D 5961-10., (2005), "Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates", Composite Materials. ASTM International. West Conshohocken, PA 15.03.
- Buckley, C.P., Harding, F., Hou, J.P., Ruiz, C. and Trojanowski, A. (2001), "Deformation of thermosetting resins at impact rates of strain. Part I: experimental study", J. Mech. Phys. Solids, 49, 1517-1538. https://doi.org/10.1016/S0022-5096(00)00085-5.
- Chamis, C.C., Abdi, F., Garg, M., Minnetyan, L., Baid, H. Huang, D., et al., (2013), "Micromechanics-based progressive failure analysis prediction for WWFE-III composite coupon test cases", J. Compos. Mater., 47(20-21), 2695-2712. https://doi.org/10.1177/0021998313499478.
- Dubina, D., Ciutina A.L. and Stratan, A. (2001), "Cyclic tests on bolted steel and composite double-sided beam-to-column joints", Steel Compos. Struct., 2(2), 147-160. http://doi.org/10.12989/scs.2002.2.2.147.
- Egan, B., McCarthy, C.T., McCarthy, M.A., Gray, P.J. and O'Higgins, R.M. (2013), "Static and high-rate loading of single and multi-bolt carbon--epoxy aircraft fuselage joints", Compos. Part A: Appl. Sci. Manufact., 53, 97-108. https://doi.org/10.1016/j.compositesa.2013.05.006.
- Elmahdy, A. and Verleysen, P. (2020), "Mechanical behavior of basalt and glass textile composites at high strain rates: A comparison", Compos. Part A: Appl. Sci. Manufact., 81. https://doi.org/10.1016/ j.polymertesting. 2019.106224.
- Feser, T., Hassan, J., Waimer, M., O'Higgins, R.M., McCarthy, C.T., Toso, N., Byrne, M.E. and McCarthy, M.A. (2020), "Effects of transient dynamic loading on the energy absorption capability of composite bolted joints undergoing extended bearing failure", Compos. Struct., 247. https://doi.org/10.1016/j.compstruct.2020.112476.
- Hahn, H.T. and Tsai, S.W. (1973), "Nonlinear Elastic Behavior of Unidirectional Composite Laminae", J. Compos. Mater., 7, 102-118. https://doi.org/10.1177/002199837300700108.
- Hahn, H.T. and Tsai, S.W. (1980), Introduction to Composite Materials, CRC Press.
- Halpin, J.C. and Kardos. J.L., (1976), "The Halpin-Tsai Equations: A Review", Polymer Eng. Sci., 16(5), 344-352. https://doi.org/10.11002/pen.760160512.
- Hart-Smith, L.J. (2003), "Design and Analysis of Bolted and Riveted Joints in Fibrous Composite Structures", In Recent Advances in Structural Joints and Repairs for Composite Materials.
- Heimbs, S., Schmeer, S., Blaurock, J. and Steeger, S. (2013), "Static and dynamic failure behaviour of bolted joints in carbon fibre composites", Compo. Part A: Appl. Sci. Manufact., 47, 91-101. https://doi.org/10.1016/j.compositesa.2012.12.003.
- Huang, Z.M. (2001), "Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model", Compos. Part A: App. Sci. Manufact., 32(2), 143-172. https://doi.org/10.1016/S1359.835X(00)00142-1.
- Ireman, T. (1998), "Three-dimensional stress analysis of bolted single-lap composite joints", Compos. Struct., 43, 195-216. https://doi.org/10.1016/S0263-8223(98)00103-2.
- Khosravani, M.R., Andres, D. and Weinberg, K., (2019), "Influence of strain rate on fracture behavior of sandwich composite T-joints", Eur. J. Mech. - A/Solids, 78. https://doi.org/10.1016/j.euromechsol.2019.103821.
- McCarthy, M.A., McCarthy, C.T. and Padhi, G.S. (2006), "A simple method for determining the effects of bolt-hole clearance on load distribution in single-column multi-bolt composite joints", Compos. Struct., 73(1), 78-87. https://doi.org/10.1016/j.compstruct.2005.01.028.
- Mosalmani, R. (2014), "Dynamic Crash of Laminated Composites Filled with Carbon Nanofibers", Ph.D. Dissertation; Iran University of Science and Technology, Tehran, Iran.
- Nelson, W.D., Bunin, B.L. and Hart-Smith, L.J. (1983), "Critical Joints in Large Composite Aircraft Structure", Nasa, USA.
- Okoli, O.I. and Smith, G.F. (2000), "The effect of strain rate and fibre content on the poisson's ratio of glass/epoxy composites", Compos. Struct., 48(1-3), 157-161. https://doi.org/10.1016/S0263-8223(99)0089-6.
- Omidi, M.J. (2008), "Dynamic Crash of Composite Structures under Intermediate Strain Rates", Ph.D. Dissertation, Iran University of Science and Technology, Tehran, Iran.
- Pearce, G.M., Johnson, A.F., Thomson, R.S. and Kelly, D.W. (2010), "Experimental investigation of dynamically loaded bolted joints in carbon fibre composite structures", Appl. Compos. Mater., 17(3), 271-291. https://doi.org/10.1007/s10443-009-9120-8.
- Reis, J.M.L., Coelho, J.L.V., Monterio, A.H. and Da Costa Mattos, H.S. (2012), "Tensile behavior of glass/epoxy laminates at varying strain rates and temperatures", Compos. Part B: Eng., 43, 2041-2046. https://doi.org/10.1016/j.compositesb.2012.02.005.
- Shamaei-Kashani, A.R. and Shokrieh, M.M. (2019), "An analytical approach to predict the mechanical behavior of single-lap single-bolt composite joints reinforced with carbon nanofibers", Compos. Struct., 215, 116-126. https://doi.org/10.1016/j.compstruct.2019.02.055.
- Sharos, P.A, Egan, B. and McCarthy, C.T. (2014), "An analytical model for strength prediction in multi-bolt composite joints at various loading rates", Compos. Struct., 116, 300-310. https://doi.org/10.1016/j.compstruct.2014.05.021.
- Shokrieh, M.M., Mosalmani, R. and Shamaei, A.R. (2015), "A combined micromechanical-numerical model to simulate shear behavior of carbon nanofiber/epoxy nanocomposites", Mater. Design, 67, 531-537. https://doi.org/10.1016/j.matdes.2014.10.077.
- Shokrieh, M.M. and Omidi, M.J. (2009), "Compressive response of glass-fiber reinforced polymeric composites to increasing compressive strain rates", Compos. Struct., 89, 517-523. https://doi.org/10.1016/j.compstruct.2008.11.006.
- Sun, L.H., Ounaies, Z., Gao, X.L., Whalen, C.A. and Yang, Z.G. (2011), "Preparation, characterization, and modelling of carbon nanofiber/epoxy nanocomposites", J. Nanomater., 2011, 1-8. https://doi.org/10.1155/2011/307589.
- Wagas, R., Uy, B., Wang, J. and Thai, H.T. (2019), "In-plane structural analysis of blind-bolted composite frames with semi-rigid joints", Steel Compos. Struct., 31(4), 373-385. http://doi.org/10.12989/scs.2019.31.4.373.
- Wang, J., Uy, B. and Li, D. 2018), "Analysis of demountable steel and composite frames with semi-rigid bolted joints", Steel Compos. Struct., 28(3), 363-380. http://doi.org/10.12989/scs.2018.28.3.363.
- Wang, P., He, R., Chen, H., Zhu, X. and Fang, D. (2015), "A novel predictive model for mechanical behavior of single-lap GFRP composite bolted joint under static and dynamic loading", Compos. Part B: Eng., 79, 322-330. https://doi.org/10.1016/j.compositesb.2015.04.053
- Wang, Z. and Xia, X. (1998), "Experimental evaluation of the strength distribution of fibers under high strain rates by bimodal weibull distribution", Compos. Sci. Technol., 57(12), 1599-1607. https://doi.org/10.1016/S0266-3538(97)00092-4
- Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.
- Zhao, L., Fang, Z., Liu, F., Shan, M. and Zhang, J. (2019), "A modified stiffness method considering effects of hole tensile deformation on bolt load distribution in multi-bolt composite joints", Compos. Part B, 171, 264-271. https://doi.org/10.1016/j.compositesb.2019.05.010.