DOI QR코드

DOI QR Code

고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동에 대한 재료모델

Material Model for Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete

  • Kwon, Soon-Oh (Diagnosis Team, Sean Safety Industry) ;
  • Bae, Su-Ho (Department of Civil Engineering, Andong National University) ;
  • Lee, Hyun-Jin (Business Department, JY Construction)
  • 투고 : 2021.08.26
  • 심사 : 2021.09.13
  • 발행 : 2021.09.30

초록

콘크리트의 낮은 인장강도와 취성적인 특성 등의 약한 재료 특성을 개선하기 위하여 수년간 하이브리드 섬유보강 콘크리트에 관한 많은 연구가 진행되어 왔다. 그러나 비정질 강섬유와 유기섬유를 이용한 하이브리드 섬유보강 콘크리트의 특성에 관한 연구는 미진한 실정이다. 본 논문의 목적은 비정질 강섬유와 폴리아미드 섬유를 이용한 고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동을 평가한 후 이들에 대한 재료모델을 제안하는 것이다. 이를 위하여 목표 압축강도 40MPa 및 60MPa 각각에 대해서 비정질 강섬유와 폴리아미드 섬유를 총 부피비 1.0%로 설정하여 섬유 조합별로 고성능 하이브리드 섬유보강 콘크리트를 제작한 후, 압축 거동 및 인장 거동을 평가하였다. 고성능 하이브리드 섬유보강 콘크리트의 실험결과를 바탕으로 압축 및 인장거동에 대한 재료모델을 제안하였으며, 제안한 모델은 실험결과와 비교적 잘 일치하는 것으로 나타났다.

Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. The purpose of this research is to evaluate the compressive and tensile behaviors and then propose a material model of high performance hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the high performance hybrid fiber reinforced concretes were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively, and then the compressive and tensile behaviors of those were evaluated. Also, based on the experimental results of the high performance hybrid fiber reinforced concrete and mortar, each material model for the compressive and tensile behavior was suggested. It was found that the experimental results and the proposed models corresponded relatively well.

키워드

과제정보

이 논문은 2018학년도 안동대학교 해외파견연구보조금에 의하여 연구되었으며, 이에 감사드립니다.

참고문헌

  1. ACI Committee 544. (1984). Fiber Reinforced Concrete, USA, Ditorit: American Concrete Institute, No. SP-81.
  2. Ahmad, S.H., Shah, S.P. (1982). Stress-strain curve of concrete confined by spiral reinforcement, Journal of ACI, 79(6), 484-490.
  3. Botta, W.J., Berger, J.E., Kiminami, C.S., Roche, V., Nogueira, R.P., Bolfarini, C. (2014). Corrosion resistance of Fe-based amorphous alloys, Journal of Alloys and Compounds, 586(1), S105-S110. https://doi.org/10.1016/j.jallcom.2012.12.130
  4. Carreira, D.J., Chu, K.H. (1985). Stress-strain relationship for plain concrete in compression, Journal of ACI, 82(6), 797-804.
  5. CEN(European Committee for Standardization). (2004). Design of concrete structures part 1-1, Eurocode2.
  6. Desayi, P., Krishnan, S. (1964). Equation for the stress-strain curve of concrete, Journal of ACI, 61(3), 345-350.
  7. Grelat, A. (1978). Nonlinear Analysis of Hyperstatic Reinforced Concrete Frames, Ph.D Thesis, University Paris VI.
  8. Hwang, J.Y. (2015). Microstructure and Soft Magnetic Properties of Fe80P20-xSix (X=4.5-6.5 at.%) Amorphous Alloy, Master's Thesis, Kyungpook National University [in Korean].
  9. Jeng, C.H., Hsu, T.T. (2009). A softened membrane model for torsion in reinforced concrete members, Engineering Structures, 31(9), 1944-1954. https://doi.org/10.1016/j.engstruct.2009.02.038
  10. Jofriet, J.C., McNeice, G.M. (1971). Finite element analysis of reinforced concrete slabs, ASCE Journal of the Structural Division, 97(3), 785-806. https://doi.org/10.1061/JSDEAG.0002845
  11. JSCE-SF5. (1984). Method of Test for Compressive Strength and Compressive Toughness of Steel Fibre-Reinforced Concrete, Concrete Library of JSCE.
  12. Kent, D.C., Park, R. (1971). Flexural members with confined concrete, ASCE Journal of the Structural Division, 97(8), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
  13. Kim, J.K., Lee, T.G. (1993). Failure behavior of reinforced concrete frames by the combined layered and nonlayered method, Computers and Structures, 48(5), 819-825. https://doi.org/10.1016/0045-7949(93)90503-6
  14. KS F 2403. (2014). Standard Test Method for Making and Curing Concrete Specimens, KS Standard, Korea [in Korean].
  15. Ku, D.O., Kim, S.D., Kim, H.S., Choi, K.K. (2014). Flexural performance characteristics of amorphous steel fiber-reinforced concrete, Journal of the Korea Concrete Institute, 26(4), 483-489 [in Korean]. https://doi.org/10.4334/JKCI.2014.26.4.483
  16. Kwon, S.O., Bae, S.H., Lee, H.J. (2020) Compressive and tensile behaviors of high performance hybrid fiber reinforced concrete, Journal of the Korean Recycled Construction Resources Institute, 8(4), 458-466 [in Korean]. https://doi.org/10.14190/JRCR.2020.8.4.458
  17. Lawer, J.S., Zampini, D., Shah, S.P. (2000). Permeability of cracked hybrid fiber-reinforced under load, ACI Material Journal, 99(4), 379-385.
  18. Lawler, J.S. (2001). Hybrid Fiber Reinforcement in Mortar and Concrete, Ph.D Thesis, Department of Civil Engineering, Northwestern University, USA.
  19. Martinez, S., Nilson, A.H., Slate, F.O. (1982). Spirally-Reinforced High-Strength Concrete Columns, Research Report No. 82-10, Department Structural Engineering, Cornell University, Ithaca, New York, 255.
  20. Moon, J.W. (2016). Mechanical Properties, Corrosion Resistance and Thermal Neutron Shielding Efficiency of Fe72-xB25Mo3Crx (x=0, 5, 10, 15, 20) High Boron Amorphous Ribbons, Master's Thesis, Kyungpook National University [in Korean].
  21. Nataraja, M.C., Dhang, N., Gupta, A.P. (1999). Stress-strain curves for steel-fiber reinforced concrete under compression, Cement and Concrete Composites, 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  22. Parente, J.E., Nogueira, G.V., Meireles, N.M., Moreira, L.S. (2014). Material and geometric nonlinear analysis of reinforced concrete frames, Revista IBRACON de Estruturas e Materiais, 7(5), 879-904. https://doi.org/10.1590/S1983-41952014000500009
  23. Poon, C.S., Shui, Z.H., Lam, L. (2004). Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures, Cement and Concrete Research, 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  24. Reinhardt, H.W. (1984). Fracture mechanics of an elastic softening material like concrete, HERON, 29(2). 1-37.
  25. Scott, B.D., Park, R., Priestley, M.J.N. (1982). Stress-strain behavior of concrete confined overlapping hoops at low and high strain rates, Journal of ACI, 79(1), 13-27.
  26. Song, P.S., Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete, Construction and Building Materials, 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  27. Won, J.P., Hwang, K.S., Park, C.G. (2005). Mechanical and early shrinkage crack of hydrophilic PVA fiber reinforced concrete with fiber volume fraction and fiber length, Journal of the Korean Society of Civil Engineers A 25(1A), 134-141 [in Korean].
  28. Yang, K.H. (2010). Slump and mechanical properties of hybrid steel-PVA fiber reinforced concrete, Journal of the Korea Concrete Institute, 22(5), 651-658 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.5.651