DOI QR코드

DOI QR Code

Non-destructive Analysis of Nano-Cementitious Composites Using Ultrasonic and Electrical Resistance

초음파 및 전기저항을 활용한 나노-시멘트 복합체의 비파괴 분석

  • Shin, Yangsub (Department of Civil Engineering, KyungHee University) ;
  • Lee, Heeyoung (Department of Civil Engineering, Chosun University) ;
  • Cho, Sanghyeon (Department of Civil Engineering, KyungHee University) ;
  • Park, Sohyeon (Department of Civil Engineering, KyungHee University) ;
  • Chung, Wonseok (Department of Civil Engineering, KyungHee University)
  • 신양섭 (경희대학교 사회기반시스템공학과) ;
  • 이희영 (조선대학교 토목공학과) ;
  • 조상현 (경희대학교 사회기반시스템공학과) ;
  • 박소현 (경희대학교 사회기반시스템공학과) ;
  • 정원석 (경희대학교 사회기반시스템공학과)
  • Received : 2021.08.27
  • Accepted : 2021.09.24
  • Published : 2021.09.30

Abstract

Nano-cementitious composites may have defects due to poor dispersion of nanomaterials and fabrication process. These defects can cause critical problems for nano-cementitious composites, but studies related to non-destructive analysis of defects sizes inside nano-cementitious composites are insufficient. This study aims to perform non-destructive analysis of nano-cementitious composites by utilizing ultrasonic and electrical resistance. Various sizes of defects were implemented inside the specimens and the specimens were subjected to ultrasonic non-destructive analysis and electrical resistance non-destructive analysis depending on the size of defects and curing days. As a result of the experiment, ultrasonic pulse velocity decreased by up to 11% as the defects size increased, and the electrical resistance increased by up to 14% depending on the defects size. For this reason, this study concluded that non-destructive analysis using ultrasonic and electrical resistance can predict defects inside nano-cementitious composites.

나노-시멘트 복합체는 나노재료 분산 불량 및 제작과정 불량으로 인하여 내부에 결함이 발생할 수 있다. 이러한 내부 결함은 나노-시멘트 복합체에 치명적인 문제를 야기할 수 있으나 국내외에서의 나노-시멘트 복합체 내부의 결함 크기에 따른 비파괴 분석 관련 연구는 미비한 실정이다. 본 연구는 초음파와 전기저항을 활용하여 나노-시멘트 복합체의 비파괴 분석을 수행하고자 한다. 시편 내부의 결함은 다양한 크기로 구현되었으며, 시편은 양생일 및 결함 크기에 따라 초음파 비파괴 분석과 전기저항 비파괴 분석이 수행되었다. 실험 결과, 초음파 전파 속도는 결함 크기가 증가할수록 최대 11% 감소하였으며, 전기저항은 결함 크기에 따라 최대 14%까지 증가하였다. 이러한 이유로 초음파와 전기저항을 이용한 비파괴 분석을 활용하여 나노-시멘트 복합체 내부의 결함을 예측할 수 있는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원(No.21NANO-B156177-02)의 지원에 의해 수행되었습니다.

References

  1. Abo-Qudais, S.A. (2005). Effect of concrete mixing parameters on propagation of ultrasonic waves, Construction and Building Materials, 19(4), 257-263. https://doi.org/10.1016/j.conbuildmat.2004.07.022
  2. Ahn, E., Gwon, S., Kim, H., Kim, C., Sim, S.H., Shin, M. (2018). Applicability of diffuse ultrasound to evaluation of the water permeability and chloride ion penetrability of cracked concrete, Sensors, 18(12), 4156. https://doi.org/10.3390/s18124156
  3. Bhalla, N., Sharma, S., Sharma, S., Siddique, R. (2018). Monitoring early-age setting of silica fume concrete using wave propagation techniques, Construction and Building Materials, 162, 802-815. https://doi.org/10.1016/j.conbuildmat.2017.12.032
  4. Bogas, J.A., Gomes, M.G., Gomes, A. (2013). Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method, Ultrasonics, 53(5), 962-972. https://doi.org/10.1016/j.ultras.2012.12.012
  5. Cheng, C., Shen, Z. (2021). Semi real-time detection of subsurface consolidation defects during concrete curing stage, Construction and Building Materials, 270, 121489. https://doi.org/10.1016/j.conbuildmat.2020.121489
  6. KDS 14 20 00 (2021). Concrete Structure Design Standard, Korea Concrete Institute [in Korean].
  7. Kim, G.M., Naeem, F., Kim, H.K., Lee, H.K. (2016). Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites, Composite Structures, 136, 162-170. https://doi.org/10.1016/j.compstruct.2015.10.010
  8. Kim, Y.Y., Oh, K.C., Park, K.T., Kwon, S.J. (2015). Modeling on ultrasonic velocity in concrete considering micro pore structure and loading conditions, The Journal of the Korea Contents Association, 15(3), 415-426. https://doi.org/10.5392/JKCA.2015.15.03.415
  9. KS F 2425 (2017). Standard Practice for Preparing Concrete Sample in the Laboratory, Korean Standards Association [in Korean].
  10. Lee, H., Park, S., Park, S., Chung, W. (2020). Enhanced detection systems of filling rates using carbon nanotube cement grout, Nanomaterials, 10(1), 10.
  11. Lee, H., Yu, W., Chung, W. (2021). Damage detection of carbon nanotube cementitious composites using thermal and electrical resistance properties, Applied Sciences, 11(7), 2955. https://doi.org/10.3390/app11072955
  12. Lee, H., Yu, W., Loh, K.J., Chung, W. (2020). Self-heating and electrical performance of carbon nanotube-enhanced cement composites, Construction and Building Materials, 250, 118838. https://doi.org/10.1016/j.conbuildmat.2020.118838
  13. Lee, S.S. (2010). A study on the strength and flowing properties of cementless type eco-friendly inorganic composites by using alkali accelerator, Journal of the Architectural Institute of Korea, 26(5), 67-74 [in Korean].
  14. Shah, A.A., Ribakov, Y. (2009). Non-linear ultrasonic evaluation of damaged concrete based on higher order harmonic generation, Materials & Design, 30(10), 4095-4102. https://doi.org/10.1016/j.matdes.2009.05.009
  15. Yoo, D.Y., You, I., Youn, H., Lee, S.J. (2018). Electrical and piezoresistive properties of cement composites with carbon nanomaterials, Journal of Composite Materials, 52(24), 3325-3340. https://doi.org/10.1177/0021998318764809
  16. Yu, Z., Lau, D. (2017). Evaluation on mechanical enhancement and fire resistance of carbon nanotube(CNT) reinforced concrete, Coupled Syst. Mech, 6(3), 335-349. https://doi.org/10.12989/csm.2017.6.3.335