Acknowledgement
This work was supported by the National Key Research and Development Program of China (2018YFD0501801), the China Agriculture Research System of MOF and MARA (CARS-37) and the Xinjiang Autonomous Region basic research business fee (KY2019117).
References
- Scollan N, Hocquette JF, Nuernberg K, Dannenberger D, Richardson I, Moloney A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 2006;74:17-33. https://doi.org/10.1016/j.meatsci.2006.05.002
- Fan YY, Fu GW, Fu CZ, Zan LS, Tian WQ. A missense mutant of the PPAR-γ gene associated with carcass and meat quality traits in Chinese cattle breeds. Genet Mol Res 2012;11:37818. http://doi.org/10.4238/2012.August.17.4
- Santos MD, Castro R, Delgadillo I, Saraiva JA. Improvement of the refrigerated preservation technology by hyperbaric storage for raw fresh meat. J Sci Food Agric 2020;100:96977. https://doi.org/10.1002/jsfa.10083
- Ladeira MM, Schoonmaker JP, Gionbelli MP, et al. Nutrigenomics and beef quality: a review about lipogenesis. Int J Mol Sci 2016;17:918. https://doi.org/10.3390/ijms17060918
- Berry DP, Conroy S, Pabiou T, Cromie AR. Animal breeding strategies can improve meat quality attributes within entire populations. Meat Sci 2017;132:6-18. https://doi.org/10.1016/j.meatsci.2017.04.019
- Li N, Li HB, Yan XM, et al. Correlation between four metabolism-related genes in different adipose tissues and adipocyte morphology in Xinjiang brown cattle. Int J Clin Exp Med 2016;9:5912-21.
- Li N, Zhang Y, Li HP, et al. Differential expression of mRNA-miRNAs related to intramuscular fat content in the longissimus dorsi in Xinjiang brown cattle. PLoS One 2018;13:e0206757. https://doi.org/10.1371/journal.pone.0206757
- Yan XM, Zhang Z, Meng Y, et al. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle. Peer J 2020;8:e8646. https://doi.org/10.7717/peerj.8646
- Li N, Yu QL, Yan XM, Li HB, Zhang Y. Sequencing and characterization of miRNAs and mRNAs from the longissimus dorsi of Xinjiang brown cattle and Kazakh cattle. Gene 2020;741:144537. https://doi.org/10.1016/j.gene.2020.144537
- Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet 2010;11:559-71. https://doi.org/10.1038/nrg2814
- Wang KC, Chang HY. Molecular mechanisms of long non-coding RNAs. Mol Cell 2011;43:904-14. https://doi.org/10.1016/j.molcel.2011.08.018
- Sun L, Bai M, Xiang L, Zhang G, Ma W, Jiang H. Comparative transcriptome profiling of longissimus muscle tissues from Qianhua Mutton Merino and Small Tail Han sheep. Sci Rep 2016;6:33586. https://doi.org/10.1038/srep33586
- Lim KS, Lee KT, Park JE, et al. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing. Anim Genet 2017;48:166-74. https://doi.org/10.1111/age.12518
- He H, Liu X. Characterization of transcriptional complexity during longissimus muscle development in bovines using high-throughput sequencing. PLoS One 2013;8:e64356. https://doi.org/10.1371/journal.pone.0064356
- Trovero MF, Rodriguez-Casuriaga R, Romeo C, et al. Revealing stage-specific expression patterns of long noncoding RNAs along mouse spermatogenesis. RNA Biol 2020;17:350-65. https://doi.org/10.1080/15476286.2019.1700332
- Liu B, Ma T, Li Q, et al. Identification of a lncRNA-associated competing endogenous RNA-regulated network in clear cell renal cell carcinoma. Mol Med Rep 2019;20:485-94. https://doi.org/10.3892/mmr.2019.10290
- Yu J, Wu X, Huang K, et al. Bioinformatics identification of lncRNA biomarkers associated with the progression of esophageal squamous cell carcinoma. Mol Med Rep 2019;19: 5309-20. https://doi.org/10.3892/mmr.2019.10213
- Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011;39(Suppl 2):W316-22. https://doi.org/10.1093/nar/gkr483
- Duricki DA, Soleman S, Moon LD. Analysis of longitudinal data from animals with missing values using SPSS. Nat Protoc 2016;11:1112-29. https://doi.org/10.1038/nprot.2016.048
- Adnan S, Ullah R. Top-cited articles in regenerative endodontics: a bibliometric analysis. J Endod 2018;44:1650-64. https://doi.org/10.1016/j.joen.2018.07.015
- Boisgontier MP, Cheval B. The anova to mixed model transition. Neurosci Biobehav Rev 2016;68:1004-5. https://doi.org/10.1016/j.neubiorev.2016.05.034
- Romao JM, He ML, McAllister TA, Guan LL. Effect of age on bovine subcutaneous fat proteome: molecular mechanisms of physiological variations during beef cattle growth. J Anim Sci 2014;92:3316-27. https://doi.org/10.2527/jas.2013-7423
- McCarthy SN, Henchion M, White A, Brandon K, Allen P. Evaluation of beef eating quality by Irish consumers. Meat Sci 2017;132:118-24. https://doi.org/10.1016/j.meatsci.2017.05.005
- Farmer LJ, Farrell DT. Review: beef-eating quality: a European journey. Animal 2018;12:2424-33. https://doi.org/10.1017/S1751731118001672
- Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12:861-74. https://doi.org/10.1038/nrg3074
- Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 2013;70:4117-30. https://doi.org/10.1007/s00018-013-1330-4
- Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011;1:4. https://doi.org/10.1186/2044-5040-1-4
- Taniguchi CM, Emanuelli B, Kahn R. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96. https://doi.org/10.1038/nrm1837
- Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001;3:1014-9. https://doi.org/10.1038/ncb1101-1014
- O'Neill BT, Lauritzen HPMM, Hirshman MF, Smyth G, Goodyear LJ, Kahn CR. Differential role of insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep 2015;11:1220-35. https://doi.org/10.1016/j.celrep.2015.04.037
- Yue B, Li H, Liu M, et al. Characterization of lncRNA-miRNAmRNA network to reveal potential functional ceRNAs in bovine skeletal muscle. Front Genet 2019;10:91. https://doi.org/10.3389/fgene.2019.00091
- Liu M, Li B, Peng W, et al. LncRNA-MEG3 promotes bovine myoblast differentiation by sponging miR-135. J Cell Physiol 2019;234:18361-70. https://doi.org/10.1002/jcp.28469
- Wang J, Xi C, Yang X, et al. LncRNA WT1-AS inhibits triple-negative breast cancer cell migration and invasion by down-regulating transforming growth factor β1. Cancer Biother Radiopharm 2019;34:671-5. https://doi.org/10.1089/cbr.2019.2925
- Cai R, Tang G, Zhang Q, et al. A novel lnc-RNA, named lnc-ORA, is identified by RNA-Seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells 2019;8:477. https://doi.org/10.3390/cells8050477
Cited by
- Release and Actions of Inflammatory Exosomes in Pulmonary Emphysema: Potential Therapeutic Target of Acupuncture vol.14, 2021, https://doi.org/10.2147/jir.s312385
- The Essential Role of Stathmin in Myoblast C2C12 for Vertical Vibration-Induced Myotube Formation vol.11, pp.11, 2021, https://doi.org/10.3390/biom11111583