DOI QR코드

DOI QR Code

수생태계의 환경유전자(environmental DNA: eDNA) 채집 및 추출기술

Sampling and Extraction Method for Environmental DNA (eDNA) in Freshwater Ecosystems

  • 김건희 (건국대학교 상허생명과학대학 휴먼앤에코케어 센터) ;
  • 류제하 ((주)시온 이엔에스) ;
  • 황순진 (건국대학교 상허생명과학대학 환경보건과학과)
  • Kim, Keonhee (Human and Eco-Care Center, Sanghuh College of Life Sciences, Konkuk University) ;
  • Ryu, Jeha (Zion E&S Co. Ltd.) ;
  • Hwang, Soon-jin (Department of Environmental Health, Sanghuh College Life Sciecnce, Konkuk University)
  • 투고 : 2021.09.12
  • 심사 : 2021.09.17
  • 발행 : 2021.09.30

초록

환경유전자(eDNA)는 다양한 환경(수중, 토양, 대기)에 존재하는 생물체로부터 유래된 유전물질을 의미한다. eDNA는 높은 민감도, 짧은 조사시간 등 많은 장점들이 존재하며 이로 인해 생물 모니터링 및 유해생물과 멸종위기 생물을 탐색하는 분야에 다양하게 활용되고 있다. 이러한 eDNA를 채집하기 위해서는 대상생물 및 대상유전자뿐만 아니라 현장 여과방법 및 eDNA 보존방법과 같이 매우 다양한 항목들을 고려해야 한다. 특히 환경에서 eDNA를 채집하는 방법은 eDNA 농도와 직결되는 항목으로서 적절한 채집방법을 사용하여 eDNA를 채집할 때 정확한 분석결과를 얻을 수 있다. 또한 현장에서 채집한 eDNA를 보존하고 추출하는 과정에서도 정확한 방법을 사용하였을 때 현장에 분포하는 eDNA의 농도를 정확하게 파악할 수 있다. 특히 eDNA 연구를 시작하는 연구자들에게 eDNA 분야는 초기 진입 장벽이 매우 높은 기술로서 이를 위한 기초 자료가 매우 절실하다. 본 연구에서는 본 연구는 eDNA가 수생태계를 연구하기 위한 도구로서 보다 널리 이용되며, eDNA를 이용하기 시작하는 연구자들에게 도움을 주고자 수생태계에서 eDNA를 채집하고 및 운반하는 방법과 실험실에서 eDNA를 추출하는 방법을 소개하고, 보다 간편하고 효율적인 eDNA 채집 도구와 방법을 제시하였다.

Environmental DNA (eDNA) is a genetic material derived from organisms in various environments (water, soil, and air). eDNA has many advantages, such as high sensitivity, short investigation time, investigation safety, and accurate species identification. For this reason, it is used in various fields, such as biological monitoring and searching for harmful and endangered organisms. To collect eDNA from a freshwater ecosystem, it is necessary to consider the target organism and gene and a wide variety of items, such as on-site filtration and eDNA preservation methods. In particular, the method of collecting eDNA from the environment is directly related to the eDNA concentration, and when collecting eDNA using an appropriate collection method, accurate (good quality) analysis results can be obtained. In addition, in preserving and extracting eDNA collected from the freshwater ecosystem, when an accurate method is used, the concentration of eDNA distributed in the field can be accurately analyzed. Therefore, for researchers at the initial stage of eDNA research, the eDNA technology poses a difficult barrier to overcome. Thus, basic knowledge of eDNA surveys is necessary. In this study, we introduced sampling of eDNA and transport of sampled eDNA in aquatic ecosystems and extraction methods for eDNA in the laboratory. In addition, we introduced simpler and more efficient eDNA collection tools. On this basis, we hope that the eDNA technique could be more widely used to study aquatic ecosystems and help researchers who are starting to use the eDNA technique.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업(과제번호: PJ0150712021)의 지원에 의해 이루어진 것임.

참고문헌

  1. Abdel-Latif, A. and G. Osman. 2017. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods 13(1): 1-9. https://doi.org/10.1186/s13007-016-0152-4
  2. Allison, M.J., J.M. Round, L.C. Bergman, A. Mirabzadeh, H. Allen, A. Weir and C.C. Helbing. 2021. The effect of silica desiccation under different storage conditions on filter-immobilized environmental DNA. BMC Research Notes 14(1): 1-6. https://doi.org/10.1186/s13104-020-05413-7
  3. Apotheloz-Perret-Gentil, L., A. Bouchez, T. Cordier, A. Cordonier, J. Gueguen, F. Rimet, V. Vasselon and J. Pawlowski. 2020. Monitoring the ecological status of rivers with diatom eDNA metabarcoding: A comparison of taxonomic markers and analytical approaches for the inference of a molecular diatom index. Molecular Ecology 30(13): 2959-2968.
  4. Azimi, S.M., G. Nixon, J. Ahern and W. Balachandran. 2011. A magnetic bead-based DNA extraction and purification microfluidic device. Microfluidics and Nanofluidics 11 (2): 157-165. https://doi.org/10.1007/s10404-011-0782-9
  5. Barnes, M.A. and C.R. Turner. 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17(1): 1-17. https://doi.org/10.1007/s10592-015-0775-4
  6. Barnes, M.A., C.R. Turner, C.L. Jerde, M.A. Renshaw, W.L. Chadderton and D.M. Lodge. 2014. Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science & Technology 48(3): 1819-1827. https://doi.org/10.1021/es404734p
  7. Berensmeier, S. 2006. Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology 73(3): 495-504. https://doi.org/10.1007/s00253-006-0675-0
  8. Biggs, J., N. Ewald, A. Valentini, C. Gaboriaud, T. Dejean, R.A. Griffiths, J. Foster, J.W. Wilkinson, A. Arnell and P. Brotherton. 2015. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation 183: 19-28. https://doi.org/10.1016/j.biocon.2014.11.029
  9. Biofact. 2021. DaBeadTM Magnetic Bead.
  10. Blancher, P., E. Lefrancois, F. Rimet and A. Bouchez. 2021. "Strategy for Successful Integration of eDNA-based Methods in Aquatic Monitoring", ARPHA Conference Abstracts.
  11. Blankenship, S.M. and G. Schumer. 2017. Field Collection Procedure for Aquatic Environmental DNA sample collection and analysis, Genidaqs Protocols, GENIDAQS.
  12. Bohmann, K., A. Evans, M.T.P. Gilbert, G.R. Carvalho, S. Creer, M. Knapp, W.Y. Douglas and M. De Bruyn. 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29(6): 358-367. https://doi.org/10.1016/j.tree.2014.04.003
  13. Bosnes, M., A. Deggerdal, A. Rian, L. Korsnes and F. Larsen. 1997. Magnetic separation in molecular biology, Springer.
  14. Boussarie, G., J. Bakker, O.S. Wangensteen, S. Mariani, L. Bonnin, J.-B. Juhel, J.J. Kiszka, M. Kulbicki, S. Manel and W.D. Robbins. 2018. Environmental DNA illuminates the dark diversity of sharks. Science Advances 4(5).
  15. Carim, K., T. Wilcox, M. Young, K. McKelvey and M. Schwartz. 2015. Protocol for collecting eDNA samples from streams [Version 2.3], Boise, ID: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Boise Aquatic Sciences Lab. 10 p. Online: http://www.fs.fed.us/research/genomics-center/docs/edna/edna-protocol.pdf.
  16. Carim, K.J., K.S. McKelvey, M.K. Young, T.M. Wilcox and M.K. Schwartz. 2016. A protocol for collecting environmental DNA samples from streams. Gen. Tech. Rep. RMRSGTR-355. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 18 p., 355.
  17. Chauhan, T. 2018. How to Prepare Lysis Buffer for Different Types of DNA Extraction Methods?. Genetic Education,
  18. Cheatham, T.E., M.F. Crowley, T. Fox and P.A. Kollman. 1997. A molecular level picture of the stabilization of A-DNA in mixed ethanol-water solutions. Proceedings of the National Academy of Sciences 94(18): 9626-9630. https://doi.org/10.1073/pnas.94.18.9626
  19. Cheng, M., A. Cook, T. Fukushima and P. Bond. 2011. Evidence of compositional differences between the extracellular and intracellular DNA of a granular sludge biofilm. Letters in Applied Microbiology 53(1): 1-7. https://doi.org/10.1111/j.1472-765X.2011.03074.x
  20. Costa, R., N. Gomes, A. Milling and K. Smalla. 2004. An optmized protocol for simultaneous extraction of DNA and RNA from soils. Brazilian Journal of Microbiology 35: 230-234. https://doi.org/10.1590/S1517-83822004000200011
  21. Creer, S., K. Deiner, S. Frey, D. Porazinska, P. Taberlet, W.K. Thomas, C. Potter and H.M. Bik. 2016. The ecologist's field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution 7(9): 1008-1018. https://doi.org/10.1111/2041-210X.12574
  22. Cruaud, P., A. Vigneron, M.S. Fradette, S.J. Charette, M.J. Rodriguez, C.C. Dorea and A.I. Culley. 2017. Open the Sterivex-TM casing: an easy and effective way to improve DNA extraction yields. Limnology and Oceanography: Methods 15(12): 1015-1020. https://doi.org/10.1002/lom3.10221
  23. Edmunds, R.C., M. Cooper, R. Huerlimann, H. Robson and D. Burrows. 2019. Environmental DNA survey of Eureka Creek, Upper Mitchell and Walsh River for two invasive tilapia species, Report.
  24. Ficetola, G.F., C. Miaud, F. Pompanon and P. Taberlet. 2008. Species detection using environmental DNA from water samples. Biology Letters 4(4): 423-425. https://doi.org/10.1098/rsbl.2008.0118
  25. Fraser, L. and J. Strzezek. 2005. Effects of freezing-thawing on DNA integrity of boar spermatozoa assessed by the neutral comet assay. Reproduction in Domestic Animals 40(6): 530-536. https://doi.org/10.1111/j.1439-0531.2005.00626.x
  26. Fujimoto, S., Y. Nakagami and F. Kojima. 2004. Optimal bacterial DNA isolation method using bead-beating technique. Memoirs Kyushu Univ Dep Of Health Scis Of Medical Sch 3: 33-38.
  27. Gane, A. 2019. Magbeads 101: A guide to choosing and using magnetic beads, Genomics and Diagnostic Solutions.
  28. Gargouri, H. and H. Hadj Kacem. 2018. Evaluation of alternative DNA extraction protocols for the species determination in turkey salami authentication tests. International Journal of Food Properties 21(1): 733-745. https://doi.org/10.1080/10942912.2017.1422263
  29. Hayami, K., M.K. Sakata, T. Inagawa, J. Okitsu, I. Katano, H. Doi, K. Nakai, H. Ichiyanagi, R.O. Gotoh and M. Miya. 2020. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecology and Evolution 10(12): 5354-5367. https://doi.org/10.1002/ece3.6279
  30. Hinlo, R., D. Gleeson, M. Lintermans and E. Furlan. 2017. Methods to maximise recovery of environmental DNA from water samples, PLoS One 12(6), e0179251. https://doi.org/10.1371/journal.pone.0179251
  31. Hobbs, J., C. Helbing and N. Veldhoen. 2017. Environmental DNA protocol for freshwater aquatic ecosystems version 2.2. Report for the BC Ministry of Environment.
  32. Hoffman, J.C., J. Schloesser, A.S. Trebitz, G.S. Peterson, M. Gutsch, H. Quinlan and J.R. Kelly. 2016. Sampling design for early detection of aquatic invasive species in Great Lakes ports. Fisheries 41(1): 26-37. https://doi.org/10.1080/03632415.2015.1114926
  33. Howard, M. 2018. Cyanotoxin and cyanobacteria monitoring in lake elsinore and canyon lake, SWAMP-MRRB8-2018-0004,
  34. HRWEMD. 2019. Investigation of the outbreak causes and management measures of the taste and odor compound (2-Methylisoborneol) in the North Han River water system (1), Han River Watershed and Environment Management District, Han River Watershed and Environment Management District.
  35. HRWEMD. 2020. Investigation of the outbreak causes and management measures of the taste and odor compound (2-Methylisoborneol) in the North Han River water system (2), Han River Watershed and Environment Management District, Han River Watershed and Environment Management District.
  36. Hundermark, E.L. and M.K. Takahashi. 2020. Improving the yield of environmental DNA from filtered aquatic samples. Conservation Genetics Resources 12(1): 49-51. https://doi.org/10.1007/s12686-018-1067-3
  37. Hurt, R.A., X. Qiu, L. Wu, Y. Roh, A. Palumbo, J. Tiedje and J. Zhou. 2001. Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology 67(10): 4495-4503. https://doi.org/10.1128/AEM.67.10.4495-4503.2001
  38. Jerde, C.L., A.R. Mahon, W.L. Chadderton and D.M. Lodge. 2011. "Sight-unseen" detection of rare aquatic species using environmental DNA. Conservation Letters 4(2): 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
  39. Junior, N. 2020. DNA and RNA stabilization, Protocols.io.
  40. Kast, D. 2016. First step of DNA Extraction, Polar TREC.
  41. Kelly, M., N. Boonham, S. Juggins, P. Kille, D. Mann, D. Pass, M. Sapp, S. Sato, R. Glover and K. Walsh. 2018. A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers, Bristol: Environment Agency 157.
  42. Kim, I., J.H. Choi, S. Kim and C.G. Kim. 2019. Identification of Fish Species in the Busan Coast using eDNA Metabarcoding, The Joint of Korean Society of Oceanography conference.
  43. Kim, J.-H., H. Jo, M.-H. Chang, S.-H. Woo, Y. Cho and J.-D. Yoon. 2020a. Application of Environmental DNA for Monitoring of Freshwater Fish in Korea. Korean Journal of Ecology and Environment 53(1): 63-72. https://doi.org/10.11614/KSL.2020.53.1.063
  44. Kim, K. 2018. Molecular genetic analysis of cyanobacterial harmful material production potential in the North Han River, Korea, Konkuk University.
  45. Kim, K., Y. Yoon, H. Cho and S.-J. Hwang. 2020b. Molecular Probes to Evaluate the Synthesis and Production Potential of an Odorous Compound (2-methylisoborneol) in Cyanobacteria. International Journal of Environmental Research and Public Health 17(6): 1933. https://doi.org/10.3390/ijerph17061933
  46. Kitagawa, T., K. Muraoka, T. Yamada and K. Nakamura. 2020. Analysis for trial cases of environmental DNA metabarcoding to fish survey in the National Census on River Environments. Journal of Japan Society of Civil Engineers 26: 319-324.
  47. Kovacevic, N. 2016. Magnetic beads based nucleic acid purification for molecular biology applications, Springer.
  48. Ladell, B.A., L.R. Walleser, S.G. McCalla, R.A. Erickson and J.J. Amberg. 2019. Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA. Conservation Genetics Resources 11(1): 83-88. https://doi.org/10.1007/s12686-017-0955-2
  49. Laramie, M.B., D.S. Pilliod, C.S. Goldberg and K.M. Strickler. 2015. Environmental DNA sampling protocol-filtering water to capture DNA from aquatic organisms, US Geological Survey.
  50. Larson, E.R., B.M. Graham, R. Achury, J.J. Coon, M.K. Daniels, D.K. Gambrell, K.L. Jonasen, G.D. King, N. LaRacuente and T.I. Perrin-Stowe. 2020. From eDNA to citizen science: emerging tools for the early detection of invasive species. Frontiers in Ecology and the Environment 18(4): 194-202. https://doi.org/10.1002/fee.2162
  51. Lee, D.H., L. Li, L. Andrus and A.M. Prince 2002. Stabilized viral nucleic acids in plasma as an alternative shipping method for NAT. Transfusion 42(4): 409-413. https://doi.org/10.1046/j.1525-1438.2002.00068.x
  52. Lever, M.A., A. Torti, P. Eickenbusch, A.B. Michaud, T. Santl-Temkiv and B.B. Jorgensen. 2015. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology 6: 476. https://doi.org/10.3389/fmicb.2015.00476
  53. Levy-Booth, D.J., R.G. Campbell, R.H. Gulden, M.M. Hart, J.R. Powell, J.N. Klironomos, K.P. Pauls, C.J. Swanton, J.T. Trevors and K.E. Dunfield. 2007. Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry 39(12): 2977-2991. https://doi.org/10.1016/j.soilbio.2007.06.020
  54. Li, J., L.J. Lawson Handley, D.S. Read and B. Hanfling. 2018. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding. Molecular Ecology Resources 18(5): 1102-1114. https://doi.org/10.1111/1755-0998.12899
  55. Licul, S., R. Impey and A. Weeks. 2021. Alcohol keeps eDNA at the party longer, ARPHA Conference Abstracts.
  56. Lucy, F.E., J. Caffrey, J.T. Dick, E. Davis and N.E. Coughlan. 2021. Prevention, Control and Eradication of Invasive Alien Species. EPA research report, No 368, 2015-NCMS-4, EPA.
  57. MacGregor, B.J., D.P. Moser, E.W. Alm, K.H. Nealson and D.A. Stahl. 1997. Crenarchaeota in lake Michigan sediment. Applied and Environmental Microbiology 63(3): 1178-1181. https://doi.org/10.1128/aem.63.3.1178-1181.1997
  58. Machler, E., K. Deiner, F. Spahn and F. Altermatt. 2016. Fishing in the water: effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environmental Science & Technology 50(1): 305-312. https://doi.org/10.1021/acs.est.5b04188
  59. Majaneva, M. 2018. How to best preserve filtered DNA?, NTNU University Museum.
  60. Majaneva, M., O.H. Diserud, S.H. Eagle, E. Bostrom, M. Hajibabaei and T. Ekrem. 2018. Environmental DNA filtration techniques affect recovered biodiversity. Scientific Reports 8(1): 1-11.
  61. McDill, J. 2009. DNA extraction, Science Learning Hub - Pokapu Akoranga Putaiao.
  62. Merkes, C.M., S.G. McCalla, N.R. Jensen, M.P. Gaikowski and J.J. Amberg. 2014. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS One 9(11): e113346. https://doi.org/10.1371/journal.pone.0113346
  63. Michael, A.G., A.P. Zoe and A.K. Christina. 2013. Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiology Ecology 83(2): 468-477. https://doi.org/10.1111/1574-6941.12008
  64. Minamoto, T. 2019. Water sampling and filtration using glass fiber filters in the laboratory, The eDNA Society.
  65. Minamoto, T., M. Miya, T. Sado, S. Seino, H. Doi, M. Kondoh, K. Nakamura, T. Takahara, S. Yamamoto and H. Yamanaka. 2021. An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environmental DNA 3(1): 8-13. https://doi.org/10.1002/edn3.121
  66. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka and H. Araki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species, Royal Society Open Science 2(7): 150088. https://doi.org/10.1098/rsos.150088
  67. Miya, M. a. S., T. 2019. Water sampling and on-site filtration using a filter cartridge. The eDNA Society.
  68. Morrison, C. and C. Kellogg. 2019. Deep search 2019: DEEP Sea exploration to advance research on Coral/Canyon/Cold seep habitats, U.S. Geological Survey, NOAA.
  69. Na, Y.-K., H. Jo, J.-W. Park, K.-H. Chang and I.-S. Kwak. 2020. The Gut Content Analysis of Polypedilum scalaenum in the Large-scale Weirs of 4 Major River Ecosystems. Korean Journal of Ecology and Environment 53(1): 55-62. https://doi.org/10.11614/KSL.2020.53.1.055
  70. Ogram, A., G.S. Sayler and T. Barkay. 1987. The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods 7(2-3): 57-66. https://doi.org/10.1016/0167-7012(87)90025-X
  71. Osmundson, T.W., C.A. Eyre, K.M. Hayden, J. Dhillon and M.M. Garbelotto. 2013. Back to basics: An evaluation of N a OH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Molecular Ecology Resources 13(1): 66-74. https://doi.org/10.1111/1755-0998.12031
  72. Pall-Coporation. 2021. Advances in filtration techniques and material options are changing the eDNA world, Pall Corporation.
  73. Park, B.S., S.H. Baek, J.-S. Ki, R.A. Cattolico and M.-S. Han. 2012. Assessment of EvaGreen-based quantitative real-time PCR assay for enumeration of the microalgae Heterosigma and Chattonella (Raphidophyceae). Journal of Applied Phycology 24(6): 1555-1567. https://doi.org/10.1007/s10811-012-9816-2
  74. Park, B.S., Z. Li, Y.-H. Kang, H.H. Shin, J.-H. Joo and M.-S. Han. 2018. Distinct bloom dynamics of toxic and non-toxic Microcystis (cyanobacteria) subpopulations in Hoedong Reservoir(Korea). Microbial Ecology 75(1): 163-173. https://doi.org/10.1007/s00248-017-1030-y
  75. Pawlowski, J., L. Apotheloz-Perret-Gentil, E. Machler and F. Altermatt. 2020. Environmental DNA applications for biomonitoring and bioassessment in aquatic ecosystems. Environmental Studies.
  76. Pilliod, D.S., R.S. Arkle and M.B. Laramie. 2017. eDNA PROTOCOL SAMPLE COLLECTION, Washington State University, USGS Snake River Field Station
  77. Piskur, J. and A. Rupprecht. 1995. Aggregated DNA in ethanol solution. FEBS Letters 375(3): 174-178. https://doi.org/10.1016/0014-5793(95)01206-T
  78. Pocock, M.J., M. Chandler, R. Bonney, I. Thornhill, A. Albin, T. August, S. Bachman, P.M. Brown, D.G.F. Cunha and A. Grez. 2018. A vision for global biodiversity monitoring with citizen science. Advances in Ecological Research 59: 169-223. https://doi.org/10.1016/bs.aecr.2018.06.003
  79. Rees, H.C., B.C. Maddison, D.J. Middleditch, J.R. Patmore and K.C. Gough. 2014. The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51(5): 1450-1459. https://doi.org/10.1111/1365-2664.12306
  80. Renshaw, M.A., B.P. Olds, C.L. Jerde, M.M. McVeigh and D.M. Lodge. 2015. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Molecular Ecology Resources 15(1): 168-176. https://doi.org/10.1111/1755-0998.12281
  81. Sanches, T.M. and A.M. Schreier. 2019. Optimizing an eDNA protocol for monitoring endangered Chinook Salmon in the San Francisco Estuary: balancing sensitivity, cost and time, bioRxiv, 871368.
  82. Sassoubre, L.M., K.M. Yamahara, L.D. Gardner, B.A. Block and A.B. Boehm. 2016. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science & Technology 50(19): 10456-10464. https://doi.org/10.1021/acs.est.6b03114
  83. Schabacker, J.C., S.J. Amish, B.K. Ellis, B. Gardner, D.L. Miller, E.A. Rutledge, A.J. Sepulveda and G. Luikart. 2020. Increased eDNA detection sensitivity using a novel high-volume water sampling method. Environmental DNA 2(2): 244-251. https://doi.org/10.1002/edn3.63
  84. Schill, W.B. 2020. Capture of Environmental DNA (eDNA) from Water Samples by Flocculation. Journal of Visualized Experiments 159: e60967.
  85. Schrock, S. 2013. Molecular Recipe for Longmire's Solution, Indiana University Ketterson/Nolan research group.
  86. Schrock, S. and group, K.N.r. 2013. Recipe for Longmire's solution.
  87. Schwartz, M.K., B.E. Penaluna and T.M. Wilcox. 2017. eDNA - Not just for fisheries biologists anymore - from The Wild-life Professional, U.S Forest service.
  88. Sepulveda, A.J., J.M. Birch, E.P. Barnhart, C.M. Merkes, K.M. Yamahara, R. Marin, S.M. Kinsey, P.R. Wright and C. Schmidt. 2020. Robotic environmental DNA bio-surveillance of freshwater health. Scientific Reports 10(1): 1-8. https://doi.org/10.1038/s41598-019-56847-4
  89. Shaw, J.L., L.J. Clarke, S.D. Wedderburn, T.C. Barnes, L.S. Weyrich and A. Cooper. 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation, 197: 131-138. https://doi.org/10.1016/j.biocon.2016.03.010
  90. Shu, L., A. Ludwig and Z. Peng. 2020. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11(3): 296. https://doi.org/10.3390/genes11030296
  91. Smalla, K., N. Cresswell, L.C. Mendonca-Hagler, A. Wolters and J.V. Elsas. 1993. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. Journal of Applied Bacteriology 74(1): 78-85. https://doi.org/10.1111/j.1365-2672.1993.tb02999.x
  92. Smart, A.S., R. Tingley, A.R. Weeks, A.R. Van Rooyen and M.A. McCarthy. 2015. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications 25(7): 1944-1952. https://doi.org/10.1890/14-1751.1
  93. Smith-Root. 2021. eDNA Citizen Science Sampler.
  94. Spens, J., A.R. Evans, D. Halfmaerten, S.W. Knudsen, M.E. Sengupta, S.S. Mak, E.E. Sigsgaard and M. Hellstrom. 2017. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods in Ecology and Evolution 8(5): 635-645. https://doi.org/10.1111/2041-210X.12683
  95. Strickler, K.M., A.K. Fremier and C.S. Goldberg. 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms, Biological Conservation 183: 85-92. https://doi.org/10.1016/j.biocon.2014.11.038
  96. Takahara, T., T. Minamoto and H. Doi. 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS One 8(2): e56584. https://doi.org/10.1371/journal.pone.0056584
  97. Takahashi, S., M.K. Sakata, T. Minamoto and R. Masuda. 2020. Comparing the efficiency of open and enclosed filtration systems in environmental DNA quantification for fish and jellyfish. PLoS One 15(4): e0231718. https://doi.org/10.1371/journal.pone.0231718
  98. Tapolczai, K., F. Keck, A. Bouchez, F. Rimet, M. Kahlert and V. Vasselon. 2019. Diatom DNA metabarcoding for biomonitoring: strategies to avoid major taxonomical and bioinformatical biases limiting molecular indices capacities. Frontiers in Ecology and Evolution 7: 409. https://doi.org/10.3389/fevo.2019.00409
  99. ThermoFisher. 2021. How do I use RNAlater to store my tissue/cell sample?.
  100. Thomas, A.C., J. Howard, P.L. Nguyen, T.A. Seimon and C.S. Goldberg. 2018. eDNA Sampler: A fully integrated environmental DNA sampling system. Methods in Ecology and Evolution 9(6): 1379-1385. https://doi.org/10.1111/2041-210X.12994
  101. Thomas, A.C., P.L. Nguyen, J. Howard and C.S. Goldberg. 2019. A self-preserving, partially biodegradable eDNA filter. Methods in Ecology and Evolution 10(8): 1136-1141. https://doi.org/10.1111/2041-210x.13212
  102. Thomsen, P.F. and E. Willerslev. 2015. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4-18. https://doi.org/10.1016/j.biocon.2014.11.019
  103. Tsai, Y.-L. and B.H. Olson. 1991. Rapid method for direct extraction of DNA from soil and sediments. Applied and Environmental Microbiology 57(4): 1070-1074. https://doi.org/10.1128/aem.57.4.1070-1074.1991
  104. Tsuji, S., T. Takahara, H. Doi, N. Shibata and H. Yamanaka. 2019. The detection of aquatic macroorganisms using environmental DNA analysis- A review of methods for collection, extraction, and detection. Environmental DNA 1(2): 99-108. https://doi.org/10.1002/edn3.21
  105. Turner, C.R., M.A. Barnes, C.C. Xu, S.E. Jones, C.L. Jerde and D.M. Lodge. 2014a. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution 5(7): 676-684. https://doi.org/10.1111/2041-210X.12206
  106. Turner, C.R., D.J. Miller, K.J. Coyne and J. Corush. 2014b. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.). PLoS One 9(12): e114329. https://doi.org/10.1371/journal.pone.0114329
  107. Ushio, M. 2019. Use of a filter cartridge combined with intra-cartridge bead-beating improves detection of microbial DNA from water samples. Methods in Ecology and Evolution 10(8): 1142-1156. https://doi.org/10.1111/2041-210x.13204
  108. Vautier, M., C. Chardon and I. Domaizon. 2021. Fish eDNA: water sampling and filtration through Sterivex filter unit, Protocols.io.
  109. Wang, S., Z. Yan, B. Hanfling, X. Zheng, P. Wang, J. Fan and J. Li. 2020. Methodology of fish eDNA and its applications in ecology and environment. Science of the Total Environment 142622. https://doi.org/10.1016/j.scitotenv.2020.142622
  110. Wegleitner, B.J., C.L. Jerde, A. Tucker, W.L. Chadderton and A.R. Mahon. 2015. Long duration, room temperature preservation of filtered eDNA samples. Conservation Genetics Resources 7(4): 789-791. https://doi.org/10.1007/s12686-015-0483-x
  111. Westfall, K.M., T.W. Therriault and C.L. Abbott. 2021. Targeted Next Generation Sequencing of environmental DNA improves detection and quantification of invasive European green crab (Carcinus maenas), bioRxiv.
  112. Williams, K.E., K.P. Huyvaert and A.J. Piaggio. 2016. No filters, no fridges: a method for preservation of water samples for eDNA analysis. Bmc Research Notes 9(1): 1-5. https://doi.org/10.1186/s13104-015-1837-x
  113. Wong, M.K.-S., M. Nakao and S. Hyodo. 2020. Field application of an improved protocol for environmental DNA extraction, purification, and measurement using Sterivex filter. Scientific Reports 10(1): 1-13. https://doi.org/10.1038/s41598-019-56847-4
  114. Zhou, J., M.A. Bruns and J.M. Tiedje. 1996. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology 62(2): 316-322. https://doi.org/10.1128/aem.62.2.316-322.1996