Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT)(No. 2020R1A2B5B01001609).
References
- Kim D. Occupational accident/injury analysis 2009. Ulsan (Korea): Korea Occupational Safety and Health Agency; 2021 Jan;15-22. Grant No.: 118006 Supported by KOSTAT.
- Kim H. Construction safety innovation plan: Reinforcement of management of vulnerable construction, etc [Internet]. Sejong (Korea): Ministry of Land, Infrastructure and Transport. 2020 Apr 24 [cited 2021 Apr 7]. Available from: http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95083805
- Heejung. Women who "watch the monitor" [Internet]. Seoul (Korea): Ildaro. 2019 Aug 30 [cited 2021 Apr 7]. Available from: https://ildaro.com/8536
- Park Y. Only one person monitors 438 CCTVs [Internet]. Seoul (Korea): Munhwa Ilbo. 2017 Nov 28 [cited 2021 Apr 7]. Available from: http://www.munhwa.com/news/view.html?no=2017112801031627109001
- Choi M, Choi J. CCTV integrated control center operation status and improvement plan legislative policy report. Seoul, Korea: National Assembly Research Service, NARS; 2019. p. 1-33.
- LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989 Dec;1(4):541-51. https://doi.org/10.1162/neco.1989.1.4.541
- Lee YJ, Park MW. 3D tracking of multiple onsite workers based on stereo vision. Automation in Construction. 2019 Feb;98:146-59. https://doi.org/10.1016/j.autcon.2018.11.017
- Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2005 Jun 20-25; San Diego, CA. NJ: Institute of Electrical and Electronics Engineers; 2005. p. 886-93. https://doi.org/10.1109/CVPR.2005.177
- Park MW, Brilakis I. Continuous localization of construction workers via integration of detection and tracking. Automation in Construction. 2016 Dec;72:129-42. https://doi.org/10.1016/j.autcon.2016.08.039
- Zhang Z. Determining the epipolar geometry and its uncertainty: A review. International journal of computer vision. 1998 Mar;27(2):161-95. https://doi.org/10.1023/A:1007941100561
- Zhao Y, Chen Q, Cao W, Yang J, Xiong J, Gui G. Deep learning for risk detection and trajectory tracking at construction sites. IEEE Access; 2019 Mar;7:30905-12. https://doi.org/10.1109/ACCESS.2019.2902658
- Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv:1804:02767 [Preprint]. 2018 [cited 2021 Apr 8]. Available from: https://arxiv.org/abs/1804.02767
- Kalman RE. A new approach to linear filtering and prediction problems. 1960 Mar;82(1):35-45. https://doi.org/10.1115/1.3662552
- Kuhn HW. The Hungarian method for the assignment problem. Naval research logistics quarterly. 1955 Mar;2(1-2):83-97. https://doi.org/10.1002/nav.3800020109
- Ishioka H, Weng X, Man Y, Kitani K. Single camera worker detection, tracking and action recognition in construction site. Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC); 2020 Oct; Kitakyushu, Japan. FL: International Association for Automation and Robotics in Construction (IAARC); 2020. p. 653-60. https://doi.org/10.22260/ISARC2020/0092
- Angah O, Chen AY. Tracking multiple construction workers through deep learning and the gradient based method with rematching based on multi-object tracking accuracy. Automation in Construction. 2020 Nov;119:103308. https://doi.org/10.1016/j.autcon.2020.103308
- He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. NJ: Institute of Electrical and Electronics Engineers; 2017. p. 2961-9. https://doi.org/10.1109/ICCV.2017.322
- Nath ND, Behzadan AH, Paal SG. Deep learning for site safety: Real-time detection of personal protective equipment. Automation in Construction. 2020 Apr;112:103085. https://doi.org/10.1016/j.autcon.2020.103085
- Son H, Choi H, Seong H, Kim C. Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks. Automation in Construction. 2019 Mar;99:27-38. https://doi.org/10.1016/j.autcon.2018.11.033
- Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence. 2017 Jun;39(6):1137-49. https://doi.org/10.1109/TPAMI.2016.2577031
- Guo Y, Xu Y, Li S. Dense construction vehicle detection based on orientation-aware feature fusion convolutional neural network. Automation in Construction. 2020 Apr;112:103124. https://doi.org/10.1016/j.autcon.2020.103124
- Li Z, Zhou F. FSSD: feature fusion single shot multibox detector. arXiv:1712.00960 [Preprint]. 2017 [cited 2021 Apr 12]. Available from: https://arxiv.org/abs/1712.00960
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015 Oct 5; Munich, Germany. MN: The Medical Image Computing and Computer Assisted Intervention Society; 2015. p. 234-41. https://doi.org/10.1007/978-3-319-24574-4_28
- Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017 Apr;39(4): 640-51. https://doi.org/10.1109/TPAMI.2016.2572683
- Truong T, Bhatt A, Queiroz L, Lai K, Yanushkevich S. Instance segmentation of personal protective equipment using a multi-stage transfer learning process. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2020 Oct 11-14; Toronto, Canada. NJ: Institute of Electrical and Electronics Engineers; 2017. p.1181-6. https://doi.org/10.1109/SMC42975.2020.9283427
- Yang Z, Yuan Y, Zhang M, Zhao X, Zhang Y, Tian B. Safety distance identification for crane drivers based on mask R-CNN. Sensors. 2019 Jan;19(12):2789. https://doi.org/10.3390/s19122789
- GitHub: Where the world builds software [Internet]. Image Polygonal Annotation with Python: GitHub, Inc. 2008 - [cited 2021 Apr 7]. Available from: https://github.com/wkentaro/labelme
- Bolya D, Zhou C, Xiao F, Lee YJ. Yolact: Real-time instance segmentation. 2019 IEEE/CVF International Conference on Computer Vision(ICCV). 2019 Oct 27-Nov 2; Seoul, Korea. NJ: Institute of Electrical and Electronics Engineers; 2020. p.9157-66. https://doi.org/10.1109/ICCV.2019.00925
- Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2017 Jul 21-26; Honolulu, HI. NJ: Institute of Electrical and Electronics Engineers; 2017. p. 2117-25. https://doi.org/10.1109/CVPR.2017.106
- Voigtlaender P, Krause M, Osep A, Luiten J, Sekar BB, Geiger A, Leibe B. Mots: Multi-object tracking and segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2019 June 15-20; Long Beach, CA. NJ: Institute of Electrical and Electronics Engineers; 2020. p. 7942-51. https://doi.org/10.1109/CVPR.2019.00813
- Luo W, Xing J, Milan A, Zhang X, Liu W, Kim TK. Multiple object tracking: A literature review. Artificial Intelligence. 2021 Apr 293:103448. https://doi.org/10.1016/j.artint.2020.103448
- Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. 2016 IEEE international conference on image processing(ICIP). 2016 Sept 25-28; Phoenix, AZ. NJ: Institute of Electrical and Electronics Engineers; 2016. p. 3464-8. https://doi.org/10.1109/ICIP.2016.7533003
- Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes (voc) challenge. International journal of computer vision. 2010 Jun;88(2):303-38. https://doi.org/10.1007/s11263-009-0275-4
- Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollar P, Zitnick CL. Microsoft coco: Common objects in context. European conference on computer vision. 2014 Sep;8693:740-55. https://doi.org/10.1007/978-3-319-10602-1_48
- Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. 2017 IEEE international conference on image processing(ICIP). 2017 Sep 17-20; Beijing, China. NJ: Institute of Electrical and Electronics Engineers; 2018. p. 3645-9. https://doi.org/10.1109/ICIP.2017.8296962
- Leal-Taixe L, Milan A, Reid I, Roth S, Schindler K. Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv:1504.01942 [Preprint]. 2015 [cited 2021 Apr 8]. Available from: https://arxiv.org/abs/1504.01942
- Milan A, Leal-Taixe L, Reid I, Roth S, Schindler K. MOT16: A benchmark for multi-object tracking. arXiv:1603.00831 [Preprint]. 2016 [cited 2021 Apr 8]. Available from: https://arxiv.org/abs/1603.00831
- GitHub: Where the world builds software [Internet]. Deep learning-based Computer Vision Models for PyTorch: GitHub, Inc. 2008 - [cited 2021 Apr 7]. Available from: https://github.com/unerue/boda
- Xuehui A, Li Z, Zuguang L, Chengzhi W, Pengfei L, Zhiwei L. Dataset and benchmark for detecting moving objects in construction sites. Automation in Construction. 2021 Feb;122:103482. https://doi.org/10.1016/j.autcon.2020.103482