DOI QR코드

DOI QR Code

Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites

건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적

  • Cho, Young-Woon (Construction Engineering and Management Institute, Sahmyook University) ;
  • Kang, Kyung-Su (Construction Engineering and Management Institute, Sahmyook University) ;
  • Son, Bo-Sik (Department of Architectural Engineering, Namseoul University) ;
  • Ryu, Han-Guk (Department of Architectural, Sahmyook University)
  • Received : 2021.04.10
  • Accepted : 2021.06.10
  • Published : 2021.10.20

Abstract

The construction industry has the highest occupational accidents/injuries and has experienced the most fatalities among entire industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. A long-time monitoring surveillance system causes high physical fatigue and has limitations in grasping all accidents in real-time. Therefore, this study aims to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple object tracking with instance segmentation. To evaluate the system's performance, we utilized the Microsoft common objects in context and the multiple object tracking challenge metrics. These results prove that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

건설업은 업무상 재해 발생빈도와 사망자 수가 다른 산업군에 비해 높아 가장 위험한 산업군으로 불린다. 정부는 건설 현장에서 발생하는 산업 재해를 줄이고 예방하기 위해 CCTV 설치 의무화를 발표했다. 건설 현장의 안전 관리자는 CCTV 관제를 통해 현장의 잠재된 위험성을 찾아 제거하고 재해를 예방한다. 하지만 장시간 관제 업무는 피로도가 매우 높아 중요한 상황을 놓치는 경우가 많다. 따라서 본 연구는 딥러닝 기반 컴퓨터 비전 모형 중 개체 분할인 YOLACT와 다중 객체 추적 기법인 SORT을 적용하여 다중 클래스 다중 객체 추적 시스템을 개발하였다. 건설 현장에서 촬영한 영상으로 제안한 방법론의 성능을 MS COCO와 MOT 평가지표로 평가하였다. SORT는 YOLACT의 의존성이 높아서 작은 객체가 적은 데이터셋을 학습한 모형의 성능으로 먼 거리의 물체를 추적하는 성능이 떨어지지만, 크기가 큰 객체에서 뛰어난 성능을 나타냈다. 본 연구로 인해 딥러닝 기반 컴퓨터 비전 기법들의 안전 관제 업무에 보조 역할로 업무상 재해를 예방할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT)(No. 2020R1A2B5B01001609).

References

  1. Kim D. Occupational accident/injury analysis 2009. Ulsan (Korea): Korea Occupational Safety and Health Agency; 2021 Jan;15-22. Grant No.: 118006 Supported by KOSTAT.
  2. Kim H. Construction safety innovation plan: Reinforcement of management of vulnerable construction, etc [Internet]. Sejong (Korea): Ministry of Land, Infrastructure and Transport. 2020 Apr 24 [cited 2021 Apr 7]. Available from: http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?id=95083805
  3. Heejung. Women who "watch the monitor" [Internet]. Seoul (Korea): Ildaro. 2019 Aug 30 [cited 2021 Apr 7]. Available from: https://ildaro.com/8536
  4. Park Y. Only one person monitors 438 CCTVs [Internet]. Seoul (Korea): Munhwa Ilbo. 2017 Nov 28 [cited 2021 Apr 7]. Available from: http://www.munhwa.com/news/view.html?no=2017112801031627109001
  5. Choi M, Choi J. CCTV integrated control center operation status and improvement plan legislative policy report. Seoul, Korea: National Assembly Research Service, NARS; 2019. p. 1-33.
  6. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural computation. 1989 Dec;1(4):541-51. https://doi.org/10.1162/neco.1989.1.4.541
  7. Lee YJ, Park MW. 3D tracking of multiple onsite workers based on stereo vision. Automation in Construction. 2019 Feb;98:146-59. https://doi.org/10.1016/j.autcon.2018.11.017
  8. Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2005 Jun 20-25; San Diego, CA. NJ: Institute of Electrical and Electronics Engineers; 2005. p. 886-93. https://doi.org/10.1109/CVPR.2005.177
  9. Park MW, Brilakis I. Continuous localization of construction workers via integration of detection and tracking. Automation in Construction. 2016 Dec;72:129-42. https://doi.org/10.1016/j.autcon.2016.08.039
  10. Zhang Z. Determining the epipolar geometry and its uncertainty: A review. International journal of computer vision. 1998 Mar;27(2):161-95. https://doi.org/10.1023/A:1007941100561
  11. Zhao Y, Chen Q, Cao W, Yang J, Xiong J, Gui G. Deep learning for risk detection and trajectory tracking at construction sites. IEEE Access; 2019 Mar;7:30905-12. https://doi.org/10.1109/ACCESS.2019.2902658
  12. Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv:1804:02767 [Preprint]. 2018 [cited 2021 Apr 8]. Available from: https://arxiv.org/abs/1804.02767
  13. Kalman RE. A new approach to linear filtering and prediction problems. 1960 Mar;82(1):35-45. https://doi.org/10.1115/1.3662552
  14. Kuhn HW. The Hungarian method for the assignment problem. Naval research logistics quarterly. 1955 Mar;2(1-2):83-97. https://doi.org/10.1002/nav.3800020109
  15. Ishioka H, Weng X, Man Y, Kitani K. Single camera worker detection, tracking and action recognition in construction site. Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC); 2020 Oct; Kitakyushu, Japan. FL: International Association for Automation and Robotics in Construction (IAARC); 2020. p. 653-60. https://doi.org/10.22260/ISARC2020/0092
  16. Angah O, Chen AY. Tracking multiple construction workers through deep learning and the gradient based method with rematching based on multi-object tracking accuracy. Automation in Construction. 2020 Nov;119:103308. https://doi.org/10.1016/j.autcon.2020.103308
  17. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. NJ: Institute of Electrical and Electronics Engineers; 2017. p. 2961-9. https://doi.org/10.1109/ICCV.2017.322
  18. Nath ND, Behzadan AH, Paal SG. Deep learning for site safety: Real-time detection of personal protective equipment. Automation in Construction. 2020 Apr;112:103085. https://doi.org/10.1016/j.autcon.2020.103085
  19. Son H, Choi H, Seong H, Kim C. Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks. Automation in Construction. 2019 Mar;99:27-38. https://doi.org/10.1016/j.autcon.2018.11.033
  20. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence. 2017 Jun;39(6):1137-49. https://doi.org/10.1109/TPAMI.2016.2577031
  21. Guo Y, Xu Y, Li S. Dense construction vehicle detection based on orientation-aware feature fusion convolutional neural network. Automation in Construction. 2020 Apr;112:103124. https://doi.org/10.1016/j.autcon.2020.103124
  22. Li Z, Zhou F. FSSD: feature fusion single shot multibox detector. arXiv:1712.00960 [Preprint]. 2017 [cited 2021 Apr 12]. Available from: https://arxiv.org/abs/1712.00960
  23. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015 Oct 5; Munich, Germany. MN: The Medical Image Computing and Computer Assisted Intervention Society; 2015. p. 234-41. https://doi.org/10.1007/978-3-319-24574-4_28
  24. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017 Apr;39(4): 640-51. https://doi.org/10.1109/TPAMI.2016.2572683
  25. Truong T, Bhatt A, Queiroz L, Lai K, Yanushkevich S. Instance segmentation of personal protective equipment using a multi-stage transfer learning process. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2020 Oct 11-14; Toronto, Canada. NJ: Institute of Electrical and Electronics Engineers; 2017. p.1181-6. https://doi.org/10.1109/SMC42975.2020.9283427
  26. Yang Z, Yuan Y, Zhang M, Zhao X, Zhang Y, Tian B. Safety distance identification for crane drivers based on mask R-CNN. Sensors. 2019 Jan;19(12):2789. https://doi.org/10.3390/s19122789
  27. GitHub: Where the world builds software [Internet]. Image Polygonal Annotation with Python: GitHub, Inc. 2008 - [cited 2021 Apr 7]. Available from: https://github.com/wkentaro/labelme
  28. Bolya D, Zhou C, Xiao F, Lee YJ. Yolact: Real-time instance segmentation. 2019 IEEE/CVF International Conference on Computer Vision(ICCV). 2019 Oct 27-Nov 2; Seoul, Korea. NJ: Institute of Electrical and Electronics Engineers; 2020. p.9157-66. https://doi.org/10.1109/ICCV.2019.00925
  29. Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2017 Jul 21-26; Honolulu, HI. NJ: Institute of Electrical and Electronics Engineers; 2017. p. 2117-25. https://doi.org/10.1109/CVPR.2017.106
  30. Voigtlaender P, Krause M, Osep A, Luiten J, Sekar BB, Geiger A, Leibe B. Mots: Multi-object tracking and segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2019 June 15-20; Long Beach, CA. NJ: Institute of Electrical and Electronics Engineers; 2020. p. 7942-51. https://doi.org/10.1109/CVPR.2019.00813
  31. Luo W, Xing J, Milan A, Zhang X, Liu W, Kim TK. Multiple object tracking: A literature review. Artificial Intelligence. 2021 Apr 293:103448. https://doi.org/10.1016/j.artint.2020.103448
  32. Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. 2016 IEEE international conference on image processing(ICIP). 2016 Sept 25-28; Phoenix, AZ. NJ: Institute of Electrical and Electronics Engineers; 2016. p. 3464-8. https://doi.org/10.1109/ICIP.2016.7533003
  33. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes (voc) challenge. International journal of computer vision. 2010 Jun;88(2):303-38. https://doi.org/10.1007/s11263-009-0275-4
  34. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollar P, Zitnick CL. Microsoft coco: Common objects in context. European conference on computer vision. 2014 Sep;8693:740-55. https://doi.org/10.1007/978-3-319-10602-1_48
  35. Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. 2017 IEEE international conference on image processing(ICIP). 2017 Sep 17-20; Beijing, China. NJ: Institute of Electrical and Electronics Engineers; 2018. p. 3645-9. https://doi.org/10.1109/ICIP.2017.8296962
  36. Leal-Taixe L, Milan A, Reid I, Roth S, Schindler K. Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv:1504.01942 [Preprint]. 2015 [cited 2021 Apr 8]. Available from: https://arxiv.org/abs/1504.01942
  37. Milan A, Leal-Taixe L, Reid I, Roth S, Schindler K. MOT16: A benchmark for multi-object tracking. arXiv:1603.00831 [Preprint]. 2016 [cited 2021 Apr 8]. Available from: https://arxiv.org/abs/1603.00831
  38. GitHub: Where the world builds software [Internet]. Deep learning-based Computer Vision Models for PyTorch: GitHub, Inc. 2008 - [cited 2021 Apr 7]. Available from: https://github.com/unerue/boda
  39. Xuehui A, Li Z, Zuguang L, Chengzhi W, Pengfei L, Zhiwei L. Dataset and benchmark for detecting moving objects in construction sites. Automation in Construction. 2021 Feb;122:103482. https://doi.org/10.1016/j.autcon.2020.103482