References
- Asadizadeh, M. and Rezaei, M. (2019), "Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilising GEP approach", Int. J. Geotech. Eng. https://doi.org/10.1080/19386362.2019.1596610.
- Asadizadeh, M., Hossaini, M. F., Moosavi, M. and Mohammadi, S. (2016), "A laboratory study on mix design to properly resemble a jointed brittle rock", Int. J. Min. Geo-Eng., 50(2), 201-210. https://doi.org/10.22059/ijmge.2016.59830.
- Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019a), "Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression", Eng. Geol., 260, 105224. https://doi.org/10.1016/J.ENGGEO.2019.105224.
- Asadizadeh, M., Masoumi, H., Roshan, H. and Hedayat, A. (2019b), "Coupling Taguchi and response surface methodologies for the efficient characterization of jointed rocks' mechanical properties", Rock Mech. Rock Eng., 52(11), 4807-4819. https://doi.org/10.1007/s00603-019-01853-1.
- Asadizadeh, M., Moosavi, M. and Hossaini, M.F. (2018a), "Investigation of mechanical behaviour of non-persistent jointed blocks under uniaxial compression", Geomech. Eng., 14(1), 29-42. https://doi.org/10.12989/gae.2018.14.1.029.
- Asadizadeh, M., Moosavi, M., Hossaini, M.F. and Masoumi, H. (2018b), "Shear strength and cracking process of non-persistent jointed rocks: An extensive experimental investigation", Rock Mech. Rock Eng., 51(2), 415-428. https://doi.org/10.1007/s00603-017-1328-6.
- ASTM-D7012-14 (2014) D7012-14 Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures.
- Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
- Bieniawski, Z.T. and Hawkes, I. (1978), "Suggested methods for determining tensile strength of rock materials", Int. J. Rock Mech. Min. Sci., 15(3), 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
- Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6.
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
- Brady, B.H.G. and Brown, E.T. (2008), Rock Mechanics for Underground Mining, Tunnelling and Underground Space Technology, Springer.
- Chen, X., Liao, Z. and Peng, X. (2012), "Deformability characteristics of jointed rock masses under uniaxial compression", Int. J. Min. Sci. Technol., 22(2), 213-221. https://doi.org/10.1016/j.ijmst.2011.08.012.
- Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy ±55° filament wound pipes", Compos. Struct., 187, 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049.
- Han, G., Jing, H., Jiang, Y., Liu, R., Su, H. and Wu, J. (2018), "The effect of joint dip angle on the mechanical behavior of infilled jointed rock masses under uniaxial and biaxial compressions", Processes, 6(5), 49. https://doi.org/10.3390/pr6050049.
- Heidarzadeh, S., Saeidi, A. and Rouleau, A. (2018), "Assessing the effect of open stope geometry on rock mass brittle damage using a response surface methodology", Int. J. Rock Mech. Min. Sci., 106, 60-73. http://doi.org/10.1016/j.ijrmms.2018.03.015.
- Huang, C., Yang, W., Duan, K., Fang, L., Wang, L. and Bo, C. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
- Huang, Y.H., Yang, S.Q., Tian, W.L., Zeng, W. and Yu, L.Y. (2016), "An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression", Acta Mechanica Sinica, 32(3), 442-455. https://doi.org/10.1007/s10409-015-0489-3.
- Kirmizakis, P., Tsamoutsoglou, C., Kayan, B. and Kalderis, D. (2014), "Subcritical water treatment of landfill leachate: Application of response surface methodology", J. Environ. Manage., 146, 9-15. https://doi.org/10.1016/j.jenvman.2014.04.037.
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
- Li, D., Masoumi, H., Saydam, S., Hagan, P.C. and Asadizadeh, M. (2018), "Parametric study of fully grouted cable bolts subjected to axial loading", Can. Geotech. J., 56(10), 1514-1525. https://doi.org/10.1139/cgj-2018-0470.
- Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Solids Struct., 42(9-10), 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
- Liu, Q., Xu, J., Liu, X., Jiang, J. and Liu, B. (2015), "The role of flaws on crack growth in rock-like material assessed by AE technique", Int. J. Fracture, 193(2), 99-115. https://doi.org/10.1007/s10704-015-0021-6.
- Miller, D.M. (1984), "Reducing transformation bias in curve fittin", Amer. Stat., 38(2), 124-126. https://doi.org/10.1080/00031305.1984.10483180.
- Montgomery, D.C. (2001), Design and Analysis of Experiments, John Wiley & Sons, New York, U.S.A., 64-65.
- Morgan, S.P., Johnson, C.A. and Einstein, H.H. (2013), "Cracking processes in Barre granite: Fracture process zones and crack coalescence", Int. J. Fracture, 180(2), 177-204. https://doi.org/10.1007/s10704-013-9810-y.
- Nemat-Nasser, S. and Horii, H. (1982), "Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst", J. Geophys. Res., 87(B8), 6805. https://doi.org/10.1029/JB087iB08p06805.
- Ozbek, O. (2021), "Axial and lateral buckling analysis of kevlar/epoxy fiber-reinforced composite laminates incorporating silica nanoparticles", Polym. Composites, 42(3), 1109-1122. https://doi.org/10.1002/pc.25886.
- Ozbek, O. and Bozkurt, O. Y. (2019), "Hoop tensile and compression behavior of glass-carbon intraply hybrid fiber reinforced filament wound composite pipes", Mater. Test., 61(8), 763-769. https://doi.org/10.3139/120.111395.
- Ozbek, O., Bozkurt, O.Y. and Erklig, A. (2019), "An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading", Polym. Test., 79, 106082. https://doi.org/10.1016/j.polymertesting.2019.106082.
- Ozbek, O., Dogan, N.F. and Bozkurt, O.Y. (2020), "An experimental investigation on lateral crushing response of glass/carbon intraply hybrid filament wound composite pipes", J. Brazil. Soc. Mech. Sci. Eng., 42(7), 1-13. https://doi.org/10.1007/s40430-020-02475-3.
- Ozkilic, Y. O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
- Park, C. H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
- Sodeifian, G., Azizi, J. and Ghoreishi, S. M. (2014) 'Response surface optimization of Smyrnium cordifolium Boiss (SCB) oil extraction via supercritical carbon dioxide', The Journal of Supercritical Fluids, 95, pp. 1-7. https://doi.org/10.1016/j.supflu.2014.07.023
- Wong, L.N.Y. and Einstein, H.H. (2009), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006.
- Wong, R.H. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
- Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fracture, 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.
- Yang, S.Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. https://doi.org/10.1016/j.engfracmech.2009.04.005.
- Yang, S.Q., Jiang, Y.Z., Xu, W.Y. and Chen, X.Q. (2008), "Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression", Int. J. Solids Struct., 45(17), 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023.
- Yang, W., Li, G., Ranjith, P.G. and Fang, L. (2019), "An experimental study of mechanical behavior of brittle rock-like specimens with multi-non-persistent joints under uniaxial compression and damage analysis", Int. J. Damage Mech., 28(10), 1490-1522. https://doi.org/10.1177/1056789519832651.
- Yin, Q., Jing, H. and Su, H. (2018), "Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression", Geosci. J., 1-18.
- Yuan, Z., Yang, J., Zhang, Y. and Zhang, X. (2015), "The optimization of air-breathing micro direct methanol fuel cell using response surface method", Energy, 80, 340-349. https://doi.org/10.1016/j.energy.2014.11.076.